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Review of Introduction to Statistics 
Different introduction to modeling 

Conceptually there are two approaches to represent reality: one that 

assume perfect knowledge and one that assume that humans will always 

have some missing information. The debate seems trivial, but the 

arguments are compelling from both perspectives. However, from 

practical perspective the lack of information approach is preferred. The 

main tool used to implement this is statistics, which assume that we have 

access to all the information, but not to all the facets that describe the 

process of interest. 

For example we can measure with high accuracy and precision the 

height and age of a tree but we cannot predict with the same level of 

accuracy and precision the height from age. So, we observe the object, 

meaning we have access to all relevant information, but we miss some of 

the related information, which generically can be described as covariate, 

or a variable that is related with the main variable of interest. To ensure 

the complete description of a process, which is one of the logical 

requirements of an argument, the missing part of the information is 

represented stochastically. Therefore, we associate a particular chance of 

an event to occur, in our example the chance to observe (measure) a 

particular height at a given age. Do not worry for the time being of the 

condition “given age”, the essence of the argument is the same. The 

theoretical limitations are not the only one that hinder the complete 

representation of reality. There is also the practical aspect, as we will 

rarely, if not ever, measure all the individuals of a population. We are 

operating thru representatives, or samples. The inference to the 

population from the sample was and still is one of the central topics of 

understanding the surrounding reality, or basically modeling. 
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Central Limit Theorem 

Now, that we know the philosophical foundation of the class, let review 

the main result of the stochastic, sampling based approach, to reality. I 

hope that you remember it: it is the Central Limit Theorem. 

The formal statement of the CLT is: 

Let assume a set of random variables 𝑋𝑖 , 𝑖 =  1, 𝑛̅̅ ̅̅̅ , that are independent 

and identically distributed. The distribution of each Xi  is the same and 

has a finite mean, μ, and variance, σ2. Then, for large n, the mean of the 

random variables is normally distributed: 

�̅�𝑛 =
𝑋1 + 𝑋2+. . +𝑋𝑛

𝑛
~𝑁𝑜𝑟𝑚𝑎𝑙 

This is the main results. However, the theorem is even more powerful 

because CLT is also providing us the mean and variance of the 

distribution of �̅�𝑛, which is 𝜇, and  σ2/n, . Therefore, CLT is formally 

written as �̅�𝑛~𝑁(𝜇,
𝜎2

𝑛
). 

Side note: One of the requirements of the CLT is that the variables have 

the same distribution; however, there is a form of CLT that has this 

requirement relaxed. This form was developed by Lyapunov and in 

essence has the same for as the classical CLT, if some additional 

conditions are fulfilled. 

Important observations: 

1. Irrespective the distribution of the random variable Xi, their mean 

of will be normally distributed. Now, let see how this major 

results, for many people the most important results of statistics, 

help us in understanding reality. Remember, we are unable to 

measure all the individuals, so we measure few individuals, n, 

which make a sample. Assuming that the individual measured are 
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from the same population of interest (let say Spruce) and that the 

variable measured is the same (let say dbh), then the distribution of 

variable is the same. This means that the dbh of spruce comes from 

the same distribution. Then, the mean dbh is normally distributed. 

This is the main results, because it relates theory to reality.  

2. The distribution of the sample mean is fully known. This is the 

most important tool to represent numerically the world around us. 

Why, because it allows us to make valid inferences from limited 

information. A normal distribution is fully described by two 

parameters: mean and variance. The CLT provides us with the 

main tool on estimation of the two parameters: 1) mean of the 

sample is the same with the mean of the distribution of the original 

variables, and 2) the variance of the sample mean is the variance of 

the original variables divided by the sample size. 

3. As the sample sizes increases, the variance of the sample mean 

decreases. Therefore, for large samples, the variance of the sample 

mean converges to zero. This trial 

results, is one of the “Achilles’ heel”, 

as it allows us to prove anything 

empirically.  

Let see how CLT operates with an example 

with Excel from an exponential distribution. I have chosen the 

exponential distribution because is a distribution very different from 

normal, as it is “open at one end”, meaning has the largest skewness 

possible (i.e., asymmetry). We will do this by creating a set of random 

samples with 5 and 50 values (i.e., n=5 and n=50). To ensure 

representatively we will choose 20 samples of each size. The 

exponential distribution is defined by ne parameter, λ, and has the 

probability density function 𝑝𝑑𝑓(𝑥) = 𝜆𝑒−𝜆𝑥. The mean of a RV 

exponentially distributed is λ-1 and the variance is λ-2. For our example, 
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let choose λ= -2, which renders a mean of 0.5 and a variance of 0.25. To 

generate a random variable with an exponential distribution in Excel we 

will use the function: -1/λ×ln(1-y), where y is a random number, 

uniformly distributed from 0 to 1. The syntax is: =-1/2*LN(1-RAND()).  

 

One small issue with CLT: to compute the mean and variance of the 

sample mean we need the mean and variance of the original 

distributions. In real word, not only that we cannot measure all the 

individuals, but also we do not know the mean and variance. Because, 

the linear property of the mean and CLT, we can replace the population 

mean with the sample mean. But we cannot do the same for variance. So 

what we can do? Lucky for us Gosset, while working for the Guinness 

Brewing Company, developed a distribution that bear his name, the t-

distribution, which can be obtained as the ratio between the mean and 

standard deviation of a set of n random variables normally distributed: 

𝑡 =
�̅�

𝑠𝑋/√𝑛
 

Looking at the formula, you should realize that there is a connection 

between CLT and t, but it is not straight forward. So how t-distribution 

is related to CLT? The simplest way of explain this relationship is by 

starting with the main theorem: 

As IN CLT, let assume a set of random variables 𝑋𝑖 , 𝑖 =  1, 𝑛̅̅ ̅̅̅ , that are 

independent and normal distributed with mean μ and variance σ2. Then 

the ratio of the difference between the variable mean and sample mean 

and the standard error of the sample has a standard normal distribution, 

N(0,1). 

Analytically, the theorem is written as: 
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For 𝑋𝑖~𝑁(𝜇, 𝜎2), 𝑖 = 1, 𝑛̅̅ ̅̅̅ , the statistics 

�̅�𝑛 =
𝑋1 + 𝑋2+. . +𝑋𝑛

𝑛
 

𝑠2 =
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
 

determine a random variable 𝑡 =
�̅�−𝜇

𝑠/√𝑛
 which follow a t-distribution with 

n-1 degrees of freedom. 

The main finding of the theorem is not that the sample mean is the same 

with the population mean, which we already know from CLT, but the 

fact that the standard deviation of a sample can be used as an estimate of 

the standard deviation of the population. Remember, CLT states that for 

a set of ANY iid random variables �̅�𝑛~𝑁(𝜇,
𝜎2

𝑛
), whereas the Gosset 

results states that 
�̅�−𝜇

𝑠/√𝑛
~𝑡(𝑛 − 1). 

Are those results important? The 

mathematician George Polya, who coined 

the term central limit theorem in 1920, 

stated that CLT plays a pivotal role in 

probability theory.  

Application of CLT 

Now that we have a more clear understanding of the main results of 

statistics, let see how we can use it. But first let revisit the foundation of 

science, again. Remember, we want to infer population parameters from 

sample statistics. Because of this “expansion” from ample to populations 

errors would be present. Therefore, it is important to know what errors 

are important. There are two types of possible errors, called false 

positive and false negative. A false positive error is an error that 
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supports a statement when in fact the statement is not true. In statistics 

false positive errors are called type I errors. A false negative error, is an 

error that does not support a statement when in fact the statement is true. 

In statistics false negative errors are called type II errors.  It is not simple 

to see that false positive and false negative are not mutually exclusive, in 

the sense that if one happens the other doesn’t. In fact there are many 

results that shows a nonlinear relationship between these two errors. 

Now that we know what errors we can encounter, which one is more 

important false positive or false negative? This is an ethical question, 

and the society decided few thousands of years ago, that false positive 

errors are not preferred. Therefore, this should be the focus of the test. 

Why? An example will clarify the reason why: let assume that you are 

judged for a crime that can end with capital punishment. The society 

decided that it is not preferred to be found guilty when innocent, false 

positive, even that this means that a true criminal will go unpunished 

(false negative).  

To assess the presence or absence of an error we are using various tests. 

Any test is a mathematical solution to a statement. For simplicity, the 

statement is called hypothesis, and because it is easier to work with 

equalities than with inequalities, a hypothesis is stated as an equation. 

The test evaluate the truthfulness of the hypothesis. Because we are in 

the fundamental assumption that information is missing, the assessment 

itself is prone to lack of information, therefore we will use a stochastic 

approach. This means that instead of stating with certitude that the 

hypothesis is true or false, the test will tell with a certain degree of 

certitude if the hypothesis is true, and consequently with a certain degree 

of certitude that the alternative, or contrary, hypothesis is true. Because 

the hypothesis to be tested is an equality, it is customary referred to as 

The Null Hypothesis. 
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One could ask rightly, what is the connection between CLT and 

hypothesis testing? The answer is rather simple. Remember, that from 

the CLT the mean of the sample is normal or t-distributed. A hypothesis 

simply states whether or not the mean of the sample has a particular 

value, given or computed. The test of Type I error is a measure of how 

far or close the sample mean is to the theoretical mean when the null 

hypothesis is true, whereas the test of Type II error is a measure of how 

close the sample mean is to the theoretical mean when the alternative 

hypothesis is true (as we see in the figure). The two shaded areas have a 

particular names: α for Type I, the red area, and β for Type II, the green 

area. α is the probabilities of Type I error, which is compared with the p-

value, and β is the probability of Type II error. You should notice that 

small α leads to larger β.  

 

All this discussion serves to test, for example, if a particular sample 

from a population is different than a given value.  Let assume for 

example that you would like to thin a particular stand. You know from 

you silviculture class that thinning can occur if the mean dbh is larger 

than 10 cm. Therefore, you went in the field and measured 10 plots. The 

following values were obtained: 10 8 11 8 9 7 11 9 6 13. The question 

is: should you thin or not? Let answer this question using hypothesis 

testing. 
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First, let convert the question of interest, thin or not thin, in a statement 

that can be tested. The null hypothesis in this case is H0: the dbh ≥ 10 

cm. Always when you setup the null hypothesis you have to state the 

alternative hypothesis, which in this case is Ha: The dbh<10. Now let 

ask yourself, why dbh <10 and not dbh ≠10. The answer is practical, 

remember the intent is to thin, and if the dbh <10 then you will not thin. 

Now that we know what we have to test, let appeal to our friend CLT. 

According to CLT, the mean of the sample is normally distributed with 

mean the mean of the population. Therefore, �̅� =
92

10
= 9.2 cm. 

Next step is to see if you have all the information required by CLT: do 

we know the variance of the population? The answer is no. Therefore, 

we have to use Gosset’s t-distribution. First let compute the variance of 

the sample: 

s2=1/9×[(10-9.2)2+(8-9.2)2+(11-9.2)2+..+(13-9.2)2]=4.4 

The statistics that follow a t-distribution is by convention labeled t 

empiric or t computed or t data, and is computed as  

𝑡𝑒𝑚𝑝𝑖𝑟𝑖𝑐 =
�̅� − 𝜇

𝑠/√𝑛
=

9.2 − 10

√4.4/10
= −1.2 

We have estimated all the values in the 

formula except the μ, which according to 

H0 is 10. The Type I error is now focused 

on the left side of the t curve, as the Ha is 

focused on the values lower than 10. 

Using Excel, we can compute the 

probability that is left on the t empiric: 

t.dist(-1.2, 10-1, TRUE)=0.13. Depending on the preset acceptance it 

can be stated that for H0 is not rejected for an α=0.05 or rejected for and 

α=0.2. 
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Expectation 

In probability and statistics a central role is played by the Expectation. 

Simply stated, the expected value of a random variable is the arithmetic 

mean of that variable. Expectation is written as E(.), where . stands for 

the parameters or statistic of interest. For example the mean of X is 

simply E(X), which is μ. Depending on the type of variables there are 

two possibilities: discrete and continuous.  

The expected value of a discrete random variable, X, is found by 

multiplying each X-value by its probability and then summing over all 

values of the random variable. 𝐸(𝑋) = ∑ 𝑝(𝑥) × 𝑥𝐴𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑋 = 𝜇 

For a continuous variable X ranging over all the real numbers, the 

expectation is defined by 

𝐸(𝑋) = ∫ 𝑓(𝑥) × 𝑥𝑑𝑥 = 𝜇
∞

−∞

 

The variance of a random variable X is defined as the expected squared 

deviation of the random variable values about its mean. Therefore, 

𝑣𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] = 𝐸(𝑋2) − 𝜇2 = 𝜎2 

For a discrete RV 

𝑣𝑎𝑟(𝑋) = ∑ 𝑝(𝑥)(𝑥 − 𝜇)2

𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑋

 

The covariance of two random variables is 

Cov(X,Y)=E[(X-E(X))(Y-E(Y)]=E(XY)-E(X)E(Y) 

Properties of expectation 

 E(aX)=aE(X) 

 E(X+Y)=E(X)+E(Y) 

 Var(a+bX)=b2var(X) 

 Var(X±Y)=var(X)+var(Y)±cov(X,Y) 


