
Chapter 

Matrix Approach to Simple 
Linear Regression Analysis 

Matrix algebra is widely used for mathematical and statistical analysis. The matrix approach 
is practically a necessity in mUltiple regression analysis, since it permits extensive systems 
of equations and large arrays of data to be denoted. compactly and operated upon efficiently. 

In this chapter, We first take up a brief introduction to matrix algebra. (A more compre
hensi ve treatment of matrix algebra may be found in specialized texts such as Reference 5.1.) 
Then we apply matrix methods to the simple linear regression model discussed in previ
ous chapters. Although matrix algebra is not really required for simple linear regression, 
the application of matrix methods to this Case will provide a useful transition to multiple 
regression, which will be taken up in Parts II and III. 

Readers familiar with matrix algebra may wish to SCan the introductory parts of this 
chapter and focus upon the later parts dealing with the USe of matrix methods in regression 
analysis. 

5.1 Matrices 

Definition of Matrix 

176 

A matrix is a rectangular array of elements arranged in rows and columns. An example of 
a matrix is: 

Column Column 
1 2 

Row 1 [16,000 !;] Row 2 33,000 
Row 3 21,000 35 

The elements of this particular matrix are numbers representing income (column 1) and 
age (column 2) of three persons. The elements are arranged by row (person) and column 

. (characteristic of person). Thus, the element in the first row and first column (16,000) 
represents the income ofthe first person. The element in the first row and second column (23) 
represents the age of the first person. The dimension of the matrix is 3 x 2, i.e., 3 rows by 
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2 columns. [fwe wanted to present income and age for 1,000 persons in a matrix with the 
Same format as the one earlier, we would require a 1,000 x 2 matrix. 

Other examples of matrices are: 

[~ 1~] [~ 7 
15 

12 
9 l~] 

These two matrices have dimensions of 2 x 2 and 2 x 4, respectively. Note that in giving the 
dimension of a matrix, we always specify the number of rows first and then the number of 
columns. As in ordinary algebra, we may USe symbols to identify the elements of a matrix: 

j=l j=2 j=3 

~ : ; [ :~: :~~ :~: ] 
Note that the first subscript identifies the row number and the second the colunb number. 
We shall Use the general notation aij for the element in the ith row and the jth column. In 
our above example, i = 1,2 and j = 1,2,3. 

A matrix may be denoted by a symbol such as A, X, or Z. The symbol is in boldface to 
identify that it refers to a matrix. Thus, We might define for the above matrix; 

Reference to the matrix A then implies reference to the 2 x 3 array just given. 
Another notation for the matrix A just given is: 

A = [aU] i = 1,2;j = 1,2,3 

This notation avoids the need for writing out all elements of the matrix by stating only the 
general element. It can only be used, of course, when the elements of a matrix are symbols. 

To summarize, a matrix with r rows and c columns will be represented either in full: 

all al2 alj ale 

a2l a22 a2j a2c 

A= 
ail ai2 aij aie 

, (S.l) 

arl a r 2 arj are 

or in abbreviated form: 

i = 1, ... , r; j = 1, ... , c 

or simply by a boldface symbol, such as A. 

Comments 

1. Do not think of a matrix as a number. It is a set of elements arranged in an array. Only when 
the matrix has dimension 1 x 1 is there a single number in a matrix, in which case one can think of 
it interchangeably as either a matrix or a number. 
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2. The following is not a matrix: 

since the numbers are not arranged in columns and rows. • 
Square Matrix 

Vector 

Transpose 

A matrix is said to be square if the number of rows equals the number of columns. Two 
examples are: 

al2 a13] 
a22 a23 
a32 a33 

A matrix containing only one column is called a coZ'fmn vector or simply a vector. Two 
eXamples are: 

A= U] c= [~l 
The vector A is a 3 x 1 matrix, and the vector C is a 5 x 1 matrix. 

A matrix containing only one row is called a row vector. Two examples are: 

B' = [15 25 50) F' = [[I /2) 

We Use the prime symbol for row vectors for reasons to be seen shortly. Note that the row 
vector B' is a 1 x 3 matrix and the row vector F' is a 1 x 2 matrix. 

A single subscript suffices to identify the elements of a vector. 

The transpose of a matrix A is another matrix, denoted by A', that is obtained by inter
changing corresponding columns and rows of the matrix A. 

For eXample, if: 

then the transpose A' is: 

[

2 
A = 7 

3x2 3 

A' _ [2 
2x3 - 5 

I~] 
7 3] 

10 4 

Note that the first column of A is the first row of A', and similarly the second column of A 
is the second row of A'. Correspondingly, the first row of A has become the first column 
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of A', and so on. Note that the dimension of A, indicated under the symbol A, becomes 
reversed for the dimension of A'. 

As another example, consider: 

[ 4] C - 7 
3xl 10 

C = [4 7 10] 
Ix3 

Thus, the transpose of a column vector is a row vector, and vice versa. This is the reason 
why we used the symbol B' earlier to identify a row vector, since it may be thought of as 
the transpose of a column vector B. 

In general, we have: 

A= 
[a;, a;" 1 = [aij] i = 1, ... ,r;j = 1, ... ,C 

rXe /''\. arl arc 
Row Column 
index index 

A/= 
[a;, ~, 1 = [aj;] j = 1, ... , c;i = 1, ... , r 

exr /''\. 
ale arc 

Row Column 

(5.3) 

index index 

Thus, the element in the ith row and the jth column in A is found in the jth row and ith 
column in A'. 

Equality of Matrices 
Two matrices A and B are said to be equal if they have the Same dimension and if all 
corresponding elements are equal. Conversely, if two matrices are equal, their corresponding 
elements alJ! equaL For example, if: 

A= [ ::] B= m 3xl 3xl 

then A = B implies: 

al =:= 4 ,b =7 a3 = 3 

Similarly, if: 

[au .,,] [17 ~] A= a2l a22 B = 14 
3x2 3x2 13 

a3l a32 
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Regression 
Examples 

then A = B implies: 

a" = 17 
a21 = 14 
a31 = 13 

al2 = 2 
a22 = 5 
a32 = 9 

In regression analysis, one basic matrix is the vector Y, consisting of the n observations on 
the response variable: 

Y= 
nxl 

Note that the transpose Y' is the row vector: 

Y,J 

(5.4) 

(5.5) 

Another basic matrix in regression analysis is the X matrix, which is defined as follows for 
simple linear regression analysis: . 

(5.6) 

The matrix X consists of a column of Is and a column containing the n observations on the 
predictor variable X. Note that the transpose of X is: 

X' _ [ 1 
2Xtl - XI L] (5.7) 

The X matrix is often referred to as the design matrix. 

5.2 Matrix Addition and Subtraction 

Adding or subtracting two matrices requires that they have the Same dimension. The sum, 
or difference, of two matrices is another matrix whose elements each consist of the sum, or 
difference, of the corresponding elements of the two matrices. Suppose: 

A= [H] B= [H] 3x2 3x2 

then: 

[1+1 4+2] 
[: Ii] A+B= 2+2 5+3 

3x2 3 + 3 6 + 4 
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Similarly: 

[

I - I 4 - 2] 
A-B= 2-2 5-3 

3x2 3 - 3 6 - 4 

In general, if: 

B = [bij] i = 1, ... ,r;j = 1, ... ,C 
rxc 

then: 

A +B = [aij + bij ] and A - B = [aij - bij ] (5.8) 
rxc rxc 

Formula (5.8) generalizes in an obvious way to addition and subtraction of more than two 
matrices. Note also that A + B = B + A, as in ordinary algebra 1.. 

The regression model: 

i = 1, . .. ,n 

Can be written compactly in matrix notation. First, let us define the vector of the mean 
responses: 

[

E{Yd] E{Y
2

} 

E{Y} = . 

nxl E{~n} 
(5.9) 

and the vector of the error terms: 

(5.10) 

Recalling the definition of the observations vector Yin (5.4), we can write the resression 
model as follows: 

Y = E{Y} + E 
nx] nxl nxl 

because: 

[

YI]- [E{Ytl] [SI] [E{Ytl+SI] Y2 E{Y2} S2 E{Y2} + S2 

L Ei~n} + S~l = E{~Yni + Sn 
Thus, the observations vector Y equals the sum of two vectors, a vector containing the 
expected values and another containing the error terms. 
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5.3 Matrix Multiplication 

Multiplication of a Matrix by a Scalar 
A scalar is an ordinary number or a symbol representing a number. In mUltiplication of a 
matrix by a scalar, every element of the matrix is mUltiplied by the scalar. For example, 
suppose the matrix A is given by: 

Then 4A, where 4 is the scalar, equals: 

Similarly, kA equals: 

where k denotes a scalar. 
If every element of a matrix has a common factor, this factor can be taken outside the 

matrix and treated as a scalar. For example: 

[ 9 27] [3 9] 
15 18 = 3 5 6 

Similarly: 

[ ~ ~l = ~ [5 2] 
3 8 k 3 8 

k k 

In general, if A = [aij] and k is a scalar, we have: 

(S.l1) 

Multiplication of a Matrix by a Matrix 
Multiplication of a matrix by a matrix may appear somewhat complicated at first, but a little 
practice will make it a routine operation. 

Consider the two matrices: 

B _ [4 6] 
2x2 - 5 8 

The product AB will be a 2 x 2 matrix whose elements are obtained by finding the cross 
products of rows of A with columns of B and summing the cross products. For instance, to 

find the element in the first row and the first column of the product AB, we work with the 
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first row of A and the first column of B, as follows: 

A B 

~:: ~ [I~ ~I] [rn ~] Row 1 

Col. 1 CoL 2 

We take the cross products and sum: 

2(4) + 5(5) = 33 

The number 33 is the element in the first row and first column of the matrix AB. 
To find the element in the first row and second column of AB, we work with the first row 

of A and the second column of B: 

A B AB 

Row 1 [D] [4 f6l] 
Row2 4 I 5 ~ 

[33 52] Row 1 

CoL 1 CoL 2 CoL 1 CoL 2 

The sum of the cross products is: 

2(6) + 5(8) = 52 

Continuing this process, We find the product AB to be: 

~~ = [~n [ ~ ~] = [~~ ;~] 
Let us consider another example: 

[3] B - 5 
3xl 2 

AB- 1 3 4 5 _ 26 [3] 2XI-[O 58] 2 -[41] 

When obtaining the product AB, we say that A is postmultiplied by B or B is premultiplied 
by A. The reason forthis precise terminology is that multiplication rules for ordinary algebra 
do not apply to matrix algebra. In ordinary algebra, xy = yx. In matrix algebra, AB i= BA 
usually. In fact, even though the product AB may be defined, the product BA may not be 
defined at alL 

In general, the product AB is defined only when the number of columns in A equals the 
number of rows in B so that there will be corresponding terms in the cross products. Thus, 
in our previous two examples, we had: 

Equal 

A/'\.B 
2x2 2x2 

'" / Dimension 
of product 

AB 
2x2 

Equal 

A/'\. B 
2x3 3xl 

'" / Dimension 
ofproducr 

AB 
2xl 

'I 

,I 
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Additional 
Examples 

Note that the dimension of the product AB is given by the number of rows in A and the 
number of columns in B. Note also that in the second CaSe the product BA would not be 
defined since the number of columns in B is not equal to the number of rows in A: 

Unequal 

B /'\. A 
3xl 2x3 

Here is another example of matrix mUltiplication: 

AB= 

In general, if A has dimension r x c and B has dimension c x s, the product AB is a matrix 
of dimension r x s whose element in the ith row and'1th column is: 

c 

Lai~'bkj 
k=1 

so that: 

i = 1, ... , r; j = 1, ... ) s (5.12) 

Thus, in the foregoing example, the element in the first row and second column of the 
product AB is: 

3 

Lalkbk2 = allb l2 + al2b22 + al3b32 
k=1 

as indeed we found by taking the cross products of the elements in the first row of A and 
second column of B and summing. 

1. 

2. [2 3 5] [~] ~ [2' + 3' + 5'] ~ [38] 

Here, the product is a 1 x 1 matrix, which is equivalent to a scalar. Thus, the matrix product 
here equals the number 38. 

3. [1 
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A product frequently needed is Y'Y, where Y is the vector of observations on the response 
variable as defined in (5.4): 

YIZ ] [~;] = [Y~+Yi+···+y,n = [LY/] (5.13) 

YIZ 

Note that Y'Y is a 1 x 1 matrix, or a scalar. We thus have a compact way of writing a sum 
of squared terms: Y'y = L Y? 

We also will need X'X, which is a 2 x 2 matrix, where X is defined in (5.6): 

X'X = [1 
2x2 XI 

1. (5.14) 

and X'Y, which is a 2 x 1 matrix: 

X'Y= [ 1 
2xl XI 

(5.15) 

5.4 Special Types of Matrices 

Certain special types of matrices arise regularly in regression analysis. We consider the 
most important of these. 

Symmetric Matrix 
If A = A', A is said to be symmetric. Thus, A below is symmetric: 

[
1 4 6] 

A = 4 2 5 
3x3 6. 5 3 

A symmetric matrix necessarily is square. Symmetric matrices arise typically in regression 
analysis when We premultiply a matrix, say, X, by its transpose, X'. The resulting matrix, 
X'X, is symmetric, as Can readily be se~n from (5.14). 

Diagonal Matrix 
A diagonal matrix is a square matrix whose off-diagonal ele~ments are all zeros, such as: . 

[~ 
0 !l [~ 

0 0 

~] 1 0 A= a2 B= 0 10 3x3 0 4x4 

0 0 
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We will often not show all zeros for a diagonal matrix, presenting it in the form: 

A= 
3x3 

B= 
4x4 

4 

o 

o 

10 

5 

Two important types of diagonal matrices are the identity matrix and the scalar matrix. 

Identity Matrix. The identity matrix or unit matrix is denoted by I. It is a diagonal matrix 
whose elements on the main diagonal are allIs. Premultiplying or postmult-$lying any r x r 
matrix A by the r x r identity matrix I leaves A unchanged. For example: 

IA = [~ ~ ~] [:~: 
o 0 1 a31 

Similarly, we have: 

Note that the identity matrix I therefore corresponds to the number 1 in ordinary algebra, 
since we have there that 1 . x = x . I = x. 

In general, we have for any r x r matrix A: 

AI=IA=A (5.16) 

Thus, the identity matrix can be inserted or dropped from a matrix expression whenever it 
is convenient to do so. 

Scalar Matrix. A scalar matrix is a diagonal matrix whose main-diagonal elements are 
the Same. Two examples of scalar matrices are: 

[

k 0 0] o k 0 
o 0 k 

A scalar matrix Can be expressed as kl, where k is the scalar. For instance: 

o 0] 
1 0 = kl 
o I 

MUltiplying an r x r matrix A by the r x r scalar matrix kl is equivalent to mUltiplying 
A by the scalar k. 
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Vector and Matrix with All Elements Unity 

Zero Vector 

A column vector with all elements 1 will be denoted by 1: 

[11 1 
1 = . 

rxl ~ 

and a square matrix with all elements 1 will be denoted by J: 

J = 
rxr 

For instance, we have: 

[1] 1 - I 
3x I I 

[; 1] 

J = 
3x3 

Note that for an n x 1 vector 1 we obtain: 

and: 

11' = 
nXn 

(5.17) 

(5.18) 

= J 
nXtz 

A zero vector is a vector containing only zeroS. The zero column vector will be denoted 
by 0: 

'0 = 

m 
(5.19) 

rxl 

For example, we have: 

o = m 3xl 
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5.5 Linear Dependence and Rank of Matrix 

linear Dependence 
Consider the following matrix: 

[
1 2 5 1] 

A= 2 2 10 6 
3 4 15 1 

Let us think now of the columns of this matrix as vectors. Thus, We view A as being made 
up of four column vectors. It happens here that the columns are interrelated in a special 
manner. Note that the third column vector is a mUltiple of the first column vectoP."'· 

We say that the columns of A are linearly dependent. They contain redundant information, 
so to speak, since one column Can be obtained as a line'ar combination of the others. 

We define the set of c column vectors C 1, ••• , Cc in an r x c matrix to be linearly 
dependent if one vector can be expressed as a linear combination of the others. If no vector 
in the set Can be so expressed, we define the set of vectors to be linearly independent. A 
more general, though equivalent, definition is: 

When c scalars k., ... , kc, not all zero, can be found such that: 

klCI + k2Cz + ... + kcCc = 0 

where 0 denotes the zero column vector, the c column vectors are linearly (S.20) 
dependent. If the only set of scalars for which the equality holds is 
kl = 0, ... , kc = 0, the set of c column vectors is linearly independent. 

To illustrate for our example, kl = 5, k2 = 0, k3 = -1, k4 = 0 leads to: 

Hence, the column vectors are linearly dependent. Note that some of the k j equal zero here. 
For linear dependence, it is only required that not all k j be zero. 

Rank of Matrix 
The rank of a matrix is defined to be the maximum number of linearly independent columns 
in the matrix. We know that the rank of A in our earlier example cannot be 4, since the four 
columns are linearly dependent. We can, however, find three columns (1, 2, and 4) which 
are linearly independent. There are no scalars k l, k2, k4 such that kl C 1 + k2C2 + k4C4 = 0 
other than kl = k2 = k4 = O. Thus, the rank of A in our example is 3. 

The rank of a matrix is unique and Can equivalently be defined as the maximum number 
of linearly independent rows. It follows that the rank of an r x c matrix Cannot exceed 
min (r , c), the minimum of the two values rand c. 
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When a matrix is the product of two matrices, its rank cannot exceed the smaller of the 
two ranks for the matrices being multiplied. Thus, if C = AB, the rank of C cannot exceed 
min (rank A, rank B). 

5.6 Inverse of a Matrix 

Examples 

1 
In ordinary algebra, the inverse of a number is its reciprocaL Thus, the inverse of 6 is -. A 
number multiplied by its inverse always equals 1: 6 

1 1 
6·-=-·6=1 

6 6 
I 

x . - = x . X-I = X-I. X = 1 
x 

In matrix algebra, the inverse of a matrix A is another matrix, denoted by A-I, such th~t: 

A-IA = AA- I = 1 (5.21) 

where 1 is the identity matrix. Thus, again, the identity matrix 1 plays the same role as the 
number 1 in ordinary algebra. An inverse of a matrix is defined only for square matrices. 
E'ven so, many square matrices do not have inverses. If a square matrix does have an inverse, 
the inverse is unique. 

1. The inverse of the matrix: 

is: 

A-I _ [-.1 .4] 
2x2 - .3 -.2 

since: 

or: 

AA-
I 

= [~ 1] [-:~ _:~] = [~ ~] =1 

2. The inverse of the matrix: 

[
3 0 0] 

A= 0,4 0 
3x! 0 0 2 

is: 

J 0 0 -
3 

A-I = 0 
1 

0 
3x3 4 

0 0 
1 
2 
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since: 
1 

0 0 -
3 

[~ 
0 

~] [~ 
0 

~] =1 
A-IA= 0 

1 
0 4 1 = 

4 0 0 

0 0 
2 

Note that the inverse of a diagonal matrix is a diagonal matrix consisting simply of the 
reciprocals of the elements on the diagonal. 

Finding the Inverse 
up to this point, the inverse of a matrix A has been given, and we have only ch~~ked to 
make sure it is the inverse by seeing whether or not A -I A = I. But how does one find the 
inverse, and when does it exist? 

An inverse of a square r x r matrix exists if the rank of the matrix is r. Such a matrix is 
said to be nonsingular or ofjull rank. An r x r matrix with rank less than r is said to be 
singular or not offull rank, and does not have an inverse. The inverse of an r x r matrix of 
full rank also has rank r. 

Finding the inverse of a matrix can often require a large amount of computing. We shall 
take the approach in this book that the inverse of a 2 x 2 matrix and a 3 x 3 matrix can 
be calculated by hand. For any larger matrix, one ordinarily UseS a computer to find the 
inverse, unless the matrix is of a special form such as a diagonal matrix. It Can be shown 
that the inverses for 2 x 2 and 3 x 3 matrices are as follows: 

1. If: 

then: 

where: 

A= 
2x2 

[ ~ -:] 
-e a 
- -
D D 

D = ad -be 

(5.22) 

(5.22a) 

D is called the determinant ofthe matrix A. If A were singular, its determinant would equal 
zero and nO inverse of A would exist. 

2. If: 

[~ 
b 

{] B= e 
3x3 h 

then: 

[~ 
b rr [~ 

B :] B-1 = e E (5.23) 
3x3 

h H 
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Where: 

B = -(bk - eh)/Z C = (bf - ce)/Z A = (ek - fh)/Z 

D = -(dk - fg)/z 

G = (dh - eg)/Z 

E = (ak - eg)/Z F = -(af - ed)/Z (S.23a) 

H = -(ah - bg)/Z K = (ae - bd)/Z 

and: 

Z = a(ek - fh) - b(dk - fg) + e(dh - eg) 

Z is called the determinant of the matrix B. 

Let us Use (5.22) to find the inverse of: 

We have: 

Hence: 

A = [~ ~] 

a=2 b=4 
e=3 d=1 

D = ad - be = 2(1) - 4(3) = -10 

A-I = [-~o 
-3 
-10 

~~l = [-.1 .4] 
2 .3 -.2 

-10 

as WaS given in an earlier example. 

(S.23b) 

When an inverse A -I has been obtained by hand calculations or from a computer program 
for which the accuracy of inverting a matrix is not known, it may be wise to compute 
A -I A to check whether the product equals the identity matrix, allowing for minor rounding 
departures from 0 and 1. 

The principal inverse matrix encountered in regression analysis is the inverse of the matrix 
X'X in (5.14): 

Using rule (5.22), We have: 

so that: 

X'X= 
[ 

n 

2x2 LXi 

a=n 

e=LXi 

b=LXi • 

d = '" X~ . 6 I 



I' 
I 
I 
i 
I' 

! I 
! ' I I 

1 
i 
I 

i 

:1 

, 
I ~ 
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Hence: 

nL(X~ -Xf -LXi 1 
nL(Xi - X)2 

Since L Xi = nX and L(Xi - X)2 = Lxi - nX2, We Can simplify (5.24): 

[ 

1 x2 

-+ 
n x· -X 2 (X'X)-I = L( ~ ) 

2x2 -X 

L(Xi - X)2 

Uses of Inverse Matrix 
In ordinary algebra, We solve an equation of the type?' 

Sy =20 

by multiplying both sides of the equation by the inverse of 5, namely: 

and we obtain the solution: 

1 1 
S(Sy) = 5(20) 

1 
y = -(20) = 4 

5 
In matrix algebra, if We have an equation: 

AY=C 

We correspondingly premultiply both sides by A -I, assuming A has an invers 

A-lAY = A-IC 

Since A -lAY = IY = Y, we obtain the solution: 

Y=A-IC 

To illustrate this Use, suppose we have two simultaneous equations: 

2YI +4Y2 = 20 

3YI + Y2 = 10 

which can be written as follows in matrix notation: 

The solution of these equations then is: 
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Earlier We found the required inverse, so We obtain:, 

[ YI] = [-.1 _.4] [20] = [2] 
Y2 .3.2 10 4 

Hence, YI = 2 and Y2 = 4 satisfy these two equations. 

5.7 Some Basic Results for Matrices 

We list here, without proof, some basic results for matrices which we will utilize in later 
work. 

A+B=B+A 

(A + B) + C = A + (B + C) 

(AB)C = A(BC) 

C(A+B) = CA+CB 

k(A + B) = kA + kB 

(A')' = A 

CA+B)' = A' +B' 

CAB)' = B'A' 

(ABC)' = C'B'A' 

(AB)-I = B-'A-I 

(ABC)-I = C-IB-IA- I 

(A-I)-l = A 

(A')-l = (A-I)' 

5.8 Random Vectors and Matrices 

(5.25) 
1.. (5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

A random vector or a random matrix contains elements that are random variables. Thus, 
the observations vector Y in (5.4) is a random vector since the Yi elements are random 
variables. 

Expectation of Random Vector or Matrix 
Suppose we have n = 3 obse~ations in the observations vector y-

Y = [i~l 
• 3x I Y

3 

The expected value of Y is a vector, denoted by E{Y}, that is defined as follows: 
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Thus, the expected value of a random vector is a vector whose elements are the expected 
values of the random variables that are the elements of the random vector. Similarly, the 
expectation of a random matrix is a matrix whose elements are the expected values of the 
corresponding random variables in the original matrix. We encountered a vector of expected 
values earlier in (5.9). 

In general, for a random vector Y the expectation is: 

E{Y} = [E{Y;}] i = 1, ... ,n (5.38) 
Ilxl 

and for a random matrix Y with dimension n x p, the expectation is: 

E{Y} = [E{Yij }] i = 1, ... ,n; j = 1, ... , p (5.39) 
IlXP 

Suppose the number of caseS in a regression application is n = 3. The three error terms £" 

£2, £3 each have expectation zero. For the error terms vector: 

we have: 

E{e} = 0 
3x' 3x' 

since: 

[ ~~:~~l = [~l 
E{£3} 0 

Variance-Covariance Matrix of Random Vector 
Consider again the random vector Y consisting of three observations Y" Y20 Y3. The variances 
of the three random variables, a 2 {y;}, and the covariances between any two of the random 
variables, a{Y;, Yj }, are assembled in the variance-covariance matrix of Y, denoted by 
(T2{y}, in the following form: 

[ 

a2{Yd a{Y" Y2 } a{Y" Y3}] 

(T2{y} = a{Y2' Yd a 2{Y2} a{Y2, Y3} 

a{Y3, Yd a{Y3, Y2} a 2{Y3} 

(5.40) 

Note that the variances are on the main diagonal, and the covariance a {y;, Yj } is found 
in the ith row and jth column of the matrix. Thus, a{Y20 Yd is found in the second row, 
first column, and a {Y" Y2 } is found in the first row, second column. Remember, of course, 
that a{Y20 Yd = a{Y" Y2}· Since a{Y;, Yj } = a{Yj, Y;} for all i i= j, (T2{y} is a symmetric 
matrix. 

It follows readily that: 

(T2{y} = E{[Y - E{Y}][Y - EfY}]'} (5.41) 
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For our illustration, We have: 

Multiplying the two matrices and then taking expectations, we obtain: 

Location in Product Term Expected Value 

Row 1, column 1 (Yl - E {Y1})z UZ{Yl } 
Row 1, column 2 (Y1 - E{Yl})(YZ - E{Yz}) U{Yl, Yzl 
Row 1, column 3 (Y1 - E {Y1 })(Y3 - E {Y3 }) U{Yl' Y31 
Row 2, column 1 (Yz - E{YZ})(Y1 - E{Y1 }) u{Yz, Y,j 

~ etc. etc. etc. 

This, of course, leads to the variance-covariance matrix in (5.40). Remember the definitions 
" of variance and covariance in (A.IS) and (A.2I), respectively, when taking expectations. 

To generalize, the variance-covariance matrix for an n x I random vector Y is: 

a 2{Yd a{Y" Y2} a{Y" Y,,} 

a{Y2, Yd a 2{Y2} a{Y2' Yn} 
(f2{y} = (S.42) 

nXn 

a{Yn' Yd a{Y,,, Y2} a 2{Yn} 

Note again that (f2{y} is a symmetric matrix. 

Let us return to the example based on n = 3 cases. Suppose that the three error terms have 
constant variance, a 2{s;} = a 2, and are uncorrelated so that a{si' Sj} = 0 for i i= j. The 
variance-Govariance matrix for the random vector E of the previous example is therefore as 
follows: 

Note that all variances are a 2 and all covariances are zero. Note also that this variance
covariance matrix is a scalar matrix, with the common variance a 2 the scalar. Hence, We 
can express the variance-covariatlce matrix in the following simple fashion: 

~{E} = a 21 
3x3 3x3 

since: 
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Some Basic Results 

Example 

Frequently, we shall encounter a random vector W that is obtained by premultiplying the 
random vector Y by a constant matrix A (a matrix whose elements are fixed): 

W=AY 

Some basic results for this case are: 

E{A} = A 

E{W} = E{AY} = AE{Y} 

a2{W} = a2{AY} = Aa2{Y}A' 

where (T2{y} is the variance-covariance matrix ofY. 

As a simple illustration ofthe Use ofthese results, com:iider: 

W A Y 
2x' 2x2 2x' 

We then have by (5.45): 

[I -1] [E{Yd] = [E{Yd - E{Y2}] E{W} = 
2xl 1 1 E{Y2} E{Yd + E{Y2} 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

[

a 2{Yd + a 2{Y2} - 2a{Y, , Y21 a 2{Yd - a 2{Y2} ] 

- a 2{Yd - a 2{Y2} a 2{Yd + a 2{Y21 + 2a{Y" Y2} 

Thus: 

a 2{Wd = a 2{y, - Y2} = a 2{Yd + a 2{Y21 - 2a{Y" Y21 

a 2{W2} = a 2{y, + Y2} = a 2{Yd + a 2{Y2} + 2o:{Y[, Y2} 

a{W" W2} = a{Y, - Y2, Y, + Y2} = a 2{Yd - a 2{Y2} 

Multivariate Normal Distribution 
Density Function. The density function for the multivariate normal distribution is best 
given in matrix form. We first need to define some vectors and matrices. The observations 
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vector Y containing an observation on each of the p Y variables is defined as usual: 

(5.47) 

The mean vector E{Y}, denoted by Il-, contains the expected values for each of the p Y 
variables: 

[

IL11 IL2 
Il-= 

pxl ~p 
(5.48) 

Finally, the variance-covariance matrix (T2{y} is denoted by 1: and contains as always the 
variances and covariances of the p Y variables: 

[a' 
al2 ... 

a"1 
I 

a21 a
2 ... a2p 2 

1: = (5.49) 
pxp : 

apl a p2 a
2 
p 

Here, a~ denotes the variance of YI , al2 denotes the covariance of YI and Y2. and the like. 
The density function ofthe multivariate normal distribution Can now be stated as follows: 

I(y) - 1 exp [-!(Y -1I)'1:- I (y - II)] 
- (2Jr)P/211:11/2 2 I'" I'" 

(5.50) 

Here, 11: 1 is the determinant of the variance-covariance matrix 1:. When there are p = 2 
variables, the multivariate normal density function (5.50) simplifies to the bivariate normal 
density function (2.74). 

The multivariate normal density function has properties that correspond to the ones de
scribed for the bivariate normal distribution. For instance, if YI , ••• , Yp are jointly normally 
distributed (Le., they follow the muIi:ivariate normal distribution), the marginal probability 
distribution of each variable Yk is normal, with mean ILk and standard deviation ak. 

-
Simple Linear Regression Model in Matrix Terms 

We are now ready to develop simple lmear regression in matrix terms. Remember again that 
we will not present any new results, but .shall only state in matrix terms the results obtained 
earlier. We begin with the normal error regression model (2.1): 

i = 1, .. . ,n (5.51) 
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This implies: 

Y, = f30 + f3,X, + S, 

Y2 = f30 + f3,X2 + S2 (5.51a) 

We defined earlier the observations vector Yin (5.4), the X matrix in (5.6), and the E vector 
in (5.10). Let us repeat these definitions and also define the ~ vector of the regression 
coefficients: 

~ _ [f3o] 
2x, - f3, rl S2 

E = 
IlX' ~n 

(5.52) 

Now we can write (5.51a) in matrix terms comractly as follows: 

Y=X ~+E 
nx' nx22x' IlX' 

(5.53) 

since: 

[

f30 + f3'X'] [S'] [f30 + f3,X, + SI] f30 + f3,X2 S2 f30 + f3,X2 + S2 

= . +. = . . . . . . . 

f30 + f3,Xn SIl f30 + f3,Xn + Sn 

Note that X~ is the vector of the expected values of the Yi observations since E {Yd = 
f30 + f3,Xi ; hence: 

E{Y} = X~ (5.54) 
Ilxl Ilxl 

where E{Y} is defined in (5.9). 
The column of Is in the X matrix may be viewed as consisting of the constant Xo == 1 

in the alternative regression model (1.5): 

where Xo == 1 

Thus, the X matrix may be considered to contain a column vector consisting of Is and 
another column vector consisting of the predictor variable observations Xi. 

With respect to the error terms, regression model (2.1) aSsumes that E{Si} = 0, a 2{Si} = 
a 2, and that the Si are independent normal random variables. The condition E {Si} = 0 in 
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matrix terms is: 

E{E} = 0 (5.55) 
Ilxl nxl 

since (5.55) states: 

[
E{Sd] [0] 

::~:: ~ r 
The condition that the error terms have constant variance a 2 and that all covariances 
a{si, Sj} for i i=j are zero (since the Si are independent) is expressed in matrix terms 
through the variance-covariance matrix of the error terms: 

[

a
2 ° ° .. . ° a 2 ° .. . 

(T2{E}= : : : 
nxn ... 

° ° ° ... 
(5.56) 

Since this is a scalar matrix, We know from the earlier example that it can be expressed in 
the following simple fashion: 

(5.56a) 

Thus, the normal error regression model (2.1) in matrix terms is: 

(5.57) 

where: 

E is a vector of independen t normal random variables with E{ E} = 0 and 
(T2{E} = a 21 

5.10 Least Squares Estimation of Regression Parameters 

Normal Equations 
The normal equations (1.9): 

in matrix terms are: 

nbo+b l LXi = LYi 

bOLXi 4-b, Lxi = LXiYi 

X'X b =X'Y 
• 2x2 2x I 2x I 

where b is the vector of the least squares regression coefficients: 

b - [bo] 
2x' - b l 

(5.58) 

(5.59) 

(5.59a) 
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To see this, recall that we obtained X'X in (5.14) and X'Y in (5.15). Equation (5.59) thus 
states: 

or: 

These are precisely the normal equations in (5.58). 

Estimated Regression Coefficients 

Example 

To obtain the estimated regression coefficients from the normal equations (5.59) by matrix 
methods, We premultiply both sides by the inverse ofX~X (we assume this exists): 

(X'X)-I X'Xb = (X'X)-I X'y 

We then find, since (X'X)-IX'X = I and Ib = b: 

b = (X'X)-I X'y 
2x I 2x2 2x I 

(5.60) 

The estimators ho and hI in b are the Same as those given earlier in (1. lOa) and (1. lOb). We 
shall demonstrate this by an example. 

We shall USe matrix methods to obtain the estimated regression coefficients for the Toluca 
Company example. The data On the Y and X variables Were given in Table 1.1. Using these 
data, we define the Y observations vector and the X matrix as follows: 

121 1 30 

[

399] 
(5.61a) Y = : 

[

1 80] 
(5.61 b) X = : : 

323 1 70 

We now require the following matrix products: 

X'X_[11 
- 80 30 

X,Y=[11 
80 30 

7~] 
[

1 80] 1 30 

1 70 

[ 
25 1,750] 

- 1,750 142,300 

1 121 7,807 

[

399] 

70 1 3~ ~ [617,180 1 

(5.61) 

(5.62) 

(5.63) 
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Using (5.22), we find the inverse ofX'X: 

(X'X)-I = [ .287475 
-.003535 

-.003535 ] 
.00005051 

(5.64) 

In subsequent matrix calculations utilizing this inverse matrix and other matrix results, we 
shall actually utilize more digits for the matrix elements than are shown. 

Finally, we employ (5.60) to obtain: 

b = [ho] = (X'X)-IX'Y = [ .287475 
hi -.003535 

-.003535 ] [ 7,807] 
.00005051 617,180 

[
62.37 ] 

- 3.5702 (5.65) 

or ho = 62.37 and hi = 3.5702. These results agree with the ones in Chapter 1. AJy differ
ences would have been due to rounding effects. 

Comments 

" 1. To derive the normal equations by the method of least squares, we minimize the quantity: 

In matrix notation: 

Q = (Y - X~)'(Y - X~) (5.66) 

Expanding, we obtain: 

Q = y'y - ~'X'Y - Y'X~ + WX'X~ 

since (X~)' = WX' by (5.32). Note now that Y'X~ is 1 x 1, hence is equal to its transpose, which 
according to (5.33) is ~'X'Y. Thus, we find: 

Q = Y'y - 2~'X'Y + ~'X'X~ (5.67) 

To find the value of ~ that minimizes Q, we differentiate with respect to {3o and {31. Let: 

(5.68) 

Then it follows that: 

-a
Q 

(Q) = -2X'Y +2X'X~ at' . (5.69) 

Equating to the zero vector, dividing by 2, m)d substituting b for ~ giVI,:8 the matrix form of the least 
squares normal equations in (5.59). 

2. A comparison of the normal equations and X'X shows that whenever the columns of X'X are 
linearly dependent, the normal equations will be linearly dependent also. No unique solutions can 
then be obtained for bo and b l . Fortunately, in most regression applications, the columns of X'X are 
linearly independent, leading to unique solutions for bo and b l . • 
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5.11 Fitted Values and Residuals 

Fitted Values 

Example 

Let the vector of the fitted values Yi be denoted by Y: 

(5.70) 

In matrix notation, we then have: 

Y = X b 
Ilxl Ilx22xl 

(5.71) 

because: 

[
YI] [1 XI] [bO+bIXI] !' ~ ~ ~' [::1 ~ bo+t,X, 
Yn 1 XII bo + b l XII 

For the Toluca Company example, we obtain the vector of fitted values using the matrices 
in (5.61b) and (5.65): 

[

1 80] [347.98] ~ _ _ 1 30 [62.37 ] _ 169.47 
Y-Xb- .. 3 0 - . :: .57 2 : 

1 70 312.28 

(5.72) 

The fitted values are the same, of course, as in Table 1.2. 

Hat Matrix. We can express the matrix result for Y in (5.71) as follows by using the 
expression for bin (5.60): 

or, equivalently: 

Y = H Y (5.73) 
nxl Ilxn nxl 

where: 

H = X(X'X)-IX' (5.73a) 
nXn 

We see from (5.73) that the fitted values Yi can be expressed as linear combinations of 
the response variable observations Yi , with the coefficients being elements of the matrix 
H. The H matrix involves only the observations on the predictor variable X, as is evident 
from (5.73a). 

The square n x n matrix H is called the hat matrix. It plays an important role in diagnostics 
for regression analysis, as we shall see in Chapter 10 when we consider whether regression 
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results are unduly influenced by one or a few observations. The matrix H is symmetric and 
has the special property (called idempotency): 

HH=H 

In general, a matrix M is said to be idempotent if MM = M. 

Let the vector of the residuals ei = Yi - Y; be denoted bye: 

In matrix notation, we then have: 

e = 
Ilxl 

e Y - Y = Y -Xb 
nxl Ilxl nxl nxl nxl 

(5.74) 

(5.75) 

(5.76) 

For the Toluca Company example, We obtain the vector of the residuals by using the results 
in (5.61a) and (5.72): 

[

399] [347.98] [51.02] 121 169.47 -48.47 
e= . - . = . . . . . . . 

323 312.28 10.72 

(5.77) 

The residuals are the same as in Table 1.2. 

Variance-Covariance Matrix of Residuals. The residuals ei, like the fitted values Yi , 

can be expressed as linear combinations of the response variable observations Yi , using the 
result in (5.73) forY: 

e=Y - Y =Y -HY= (I-H)Y 

We thus have the important result: 

e=(I-H)Y (5.78) 
nxl IlXtz nxtz nxl 

where H is the hat matrix defined in (5.53a). The matrix I - H, like the matrix H, is 
symmetric and idempotent. ' 

The variance-covariance m~trix of the vector of residuals e involves the matrix I - H: 

(5.79) 
IZxn 

and is estimated by: 

s2{e} = MSE(I - H) (5.80) 
nXtz 
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Comment 
The variance-covariance matrix of e in (5.79) can be derived by means of (5.46). Since e = (I - H) Y, 
we obtain: 

(T2{e) = (I - H)(T2{Y}(I - H)' 

Now (T2{Y}=(T2{E}=u2I for the normal error model according to (5.56a). Also, (I-H)'"" 
I - H because of the symmetry of the matrix. Hence: 

(T2(e) = u 2(I - H)I(I - H) 

= u 2(I - H)(I - H) 

In view of the fact that the matrix I - H is idempotent, we know th~~l- H) (I - H) :::= 

1- H and we obtain formula (5.79). • 

5.12 Analysis of Variance Results 

Sums of Squares 
To see how the sums of squares are expressed in matrix notation, we begin with the total SUm 
of squares ssro, defined in (2.43). It will be convenient to Use an algebraically equivalent 

expression: 

ssro = l)Y; - y)2 = Ly;2 _ ('L:;)2 

We know from (5.13) that: 

(5.81) 

The subtraction term ('Ly;)2 In in matrix form USeS J, the matrix of Is defined in (5.18), 
as follows: 

(5.82) 

For instance, if n = 2, we have: 

Hence, it follows that: 

SSTO = Y'Y - (~) Y'JY (5.83) 

Just as 'LY? is represented by Y'Y in matrix terms, so SSE = 'L ei = 'LeY; - y;)2 can 
be represented as follows: 

SSE = e'e = (Y - Xb)'(Y - Xb) (5.84) 

which can be shown to equal: 

SSE = y'y - b'X'Y (S.84a) 
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Finally, it Can be shown that: 

SSR = b'X'Y - (~) Y'JY (5.85) 

Let us find SSE for the Toluca Company example by matrix methods, using (5.84a). Using 
(5.61a), We obtain: 

Y'Y = [399 121 
[

399] 121 
323] : = 2,745,173 

323 

and using (5.65) and (5.63), we find: 

b'X'Y = [62.37 3.5702] [61;:~~~] = 2,690,348 

Hence: 

SSE = Y'Y - b'X'Y = 2,745,173 - 2,690,348 = 54,825 

which is the Same result as that obtained in Chapter 1. Any difference would have been due 
to rounding effects. 

Comment 

To illustrate the derivation of the sums of squares expressions in matrix notation, consider SSE: 

SSE = e' e = (y - Xb)' (Y - Xb) = y'y - 2b'X'Y + b'X'Xb 

In substituting for the rightmost b we obtain by (5.60): 

SSE = y'y - 2b'X'Y + b'X'X(X'X) -IX'Y 

= y'y - 2b'X'Y + b'IX'Y 

In dropping I and subtracting, we obtain the result in (5.84a). • 
Sums of Squares as Quadratic Forms 

The ANOVA sums of squares Can be shown to be quadratic forms. An example of a quadratic 
form of the observations Y; when n = 2 is: 

(5.86) 
-

Note that this expression is a second-degree polynomial containing terms involving the 
squares of the observations and the cross product. We Can express (5.86) in matrix terms as 
follows: 

(S.86a) 

where A is a symmetric matrix. 
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In general, a quadratic form is defined as: 
1Z 1Z 

Y'AY= ~~aijYiYj 
lxl L...L... where aij = aji (5.87) 

i=l j=l 

A is a symmetric n x n matrix and is called the matrix of the quadratic form. 
The ANOVA sums of squares ssro, SSE, and SSR are all quadratic forms, as Can be 

seen by reexpressing b'X'. From (5.71), we know, using (5.32), that: 

b'X' = (Xb)' = Y' 
We now use the result in (5.73) to obtain: 

b'X' = (HY)' ,,/) 

Since H is a symmetric matrix so that H' = H, we finally obtain, using (5.32): 

b'X' =Y'H 

This result enables us to express the ANOVA sums of squares as follows: 

SSTO = Y' [I -_(~)~] Y 
SSE = Y'(I- H)Y 

(5.88) 

(S.89a) 

(S.89b) 

(S.89c) 

Each ofthese sums of squares can now be seen to be of the form Y' AY, where the three A 
matrices are: 

1 - (~) J (S.90a) 

I-H (S.90b) 

H - (~) J (S.9Oc) 

Since each of these A matrices is symmetric, SSTO, SSE, and SSR are quadratic forms, 
with the matrices ofthe quadratic forms given in (5.90). Quadratic forms play an important 
role in statistics because all sums of squares in the analysis of variance for linear statistical 
models Can be expressed as quadratic forms. 

5.13 Inferences in Regression Analysis 

As We Saw in earlier chapters, all interval estimates are ofthe following form: point estimator 
plus and minus a certain number of estimated standard deviations of the point estimator. 
Similarly, all tests require the point estimator and the estimated standard deviation of the 
point estimator or, in the Case of analysis of variance tests, various sums of squares. Matrix 
algebra is of principal help in inference making when obtaining the estimated standard 
deviations and sums of squares. We have already given the matrix equivalents of the sums 
of squares for the analysis of variance. We focus here chiefly on the matrix eXpressions for 
the estimated variances of point estimators of interest. 
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Regression Coefficients 

Example 

The variance-covariance matrix of b: 

is: 

(T2{b} = a 2(X'X)-1 
2x2 

or, from (5.24a): 

~ {b} = [:2 + =E::-~:-~:-~_~_2 X=)C-=-2 

2x2 -Xa2 

EeXi - X)2 

(S.91) 

(S.92) 

(S.92a) 
1.. 

When MSE is substituted for a 2 in (5.92a), We obtain the estimated variance-covariance 
matrix of b, denoted by S2 {b}: 

[

MSE X2MSE 
--+==---~ 

s2{b} = MSE(X'X)-I = n ~eXi - X)2 
2x2 -XMSE 

E(X i - X)2 

-XMSE 1 EeXi - X)2 

MSE 
(S.93) 

In (5.92a), you will recognize the variances of bo in (2.22b) and of b l in (2.3b) and the 
covariance of bo and b l in (4.5). Likewise, the estimated variances in (5.93) are familiar 
from earlier chapters. 

We wish to find s2{bo} and s2{bd for the Toluca Company example by matrix methods. 
Using the results in Figure 2.2 and in (5.64), We obtain: 

2{b} = MSE(X'X)-I = 2384 [ .287475 
s , -.003535 

= [685.34 -8.428 ] 
-8.428 .12040 

-.003535 ] 
.00005051 

(S.94) 

Thus, s2{bo} = 685.34 and s2{bd = '.12040. These are the same as the results obtained in 
Chapter 2. 

Comment 

To derive the variance-covariance-matrix of b, recall that: . 
b = (X'X)-IX'Y .= AY 

where A is a constant matrix: 

Hence. by (5.46) we have: 
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Now (12{y) = u 2I. Further, it follows from (5.32) and the fact that (X'X)-l is symmetric that: 

We find therefore: 

A' = X(X'X)-l 

(12{b) = (X'X)-IX'u2IX(X'X)-1 

= u 2 (X'X)-IX'X(X,X)-1 

= U 2 (X'X)-II 

= u 2 (X'X)-1 

,/ . 
Mean Response 

Example 

To estimate the mean response at Xh, let us define the vector: 

or 
-'1" 

X~= [1 Xh] (5.95) 
Ix2 

The fitted value in matrix notation then is: 

Yh = X~b (5.96) 

since: 

Note that X~b is a 1 x 1 matrix; hence, We Can write the final result as a scalar. 
The variance of Yh , given earlier in (2.29b), in matrix notation is: 

a 2{YhJ = a2X~(X'X)-IXh (5.97) 

The variance of Yh in (5.93) Can be expressed as a function of (12 {b J, the variance-covariance 
matrix of the estimated regression coefficients, by making USe of the result in (5.92): 

a 2{YhJ = X~~{bJXh (5.97a) 

The estimated variance of Yh , given earlier in (2.30), in matrix notation is: 

S2{YhJ = MSE(X~(X'X)-IXh) (5.98) 

We wish to find S2{YhJ for the Toluca Company eXample when Xh = 65. We define: 

X~ = [1 65] 

and Use the result in (5.94) to obtain: 

S2{YhJ = X~s2{bJXh 

= [1 65] [685.34 
-8.428 

-8.428 ] [ 1] 
.12040 65 = 98.37 

This is the same result as that obtained in Chapter 2. 
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Comment 

The result in (5.97a) can be derived directly by using (5.46), since Yh = X;,b; 

U
2 {Yh} = X;,u2 {blXh 

Hence: 

or: 

u 2{i\1 = u 2{bol + 2X"u{bo, bd + X;,u2{bd 

Using the results from (5.92a), we obtain: 

2 y: _ u 2 
U

2X2 2X,,(-X)u2 X;,u2 

U { hl- -;; + E(Xi _ X)2 + E(Xi - X)2 + E(Xi - X)2 

which reduces to the familiar expression; 

(5.99) 

(5.99a) 

Thus, we see explicitly that the variance expression in (5.99a) contains contributions from u 2 {bo}, 
u 2{bd, andu{bo,bd, which it must according to (A.30b) since Yh = bo+b1Xh is a linear combination 
ofbo andb l · • 

Prediction of New Observation 
The estimated variance s2{pred}, given earlier in (2.38), in matrix notation is; 

s2{pred} = MSE(l + X~(X'X)-IXh) (5.100) 

Cited 5.1. Graybill, F. A. Matrices with Applications in Statistics. 2nd ed. Belmont, Calif.: Wadsworth, 

Reference 2002. 

Problems 5.1. For the matrices below, obtain (1) A +B, (2) A - B, (3) AC, (4) AB', (5) B'A. 

A = [~ i 1 . B.= [i n 
State the dimension of each resulting matrix. 

C=[381] 
540 

5.2. For the matrices below, obtain (1) A + C, (2) A - C, (3) B' A, (4) AC, (5) C' A. 

State the dimension of each resulting matrix. 

5.3. Show how the following expressions are written in terms of matrices: (1) Ii - Yi ei, 

(2) E Xiei = O. Assume i = 1, ... , 4. 




