
Chapter 

Multiple Regression I 
.,,.J''· 

Multiple regression analysis is one of the most widely used of all statistical methods. In 
this chapter, we first discuss a variety of multiple regression models. Then we present the 
basic statistical results for multiple regression in matrix form. Since the matrix expressions 
for multiple regression are the same as for simple linear regression, we state the results 
without much discussion. We conclude the chapter with an example, illustrating a variety 
of inferences and residual analyses in multiple regression analysis. 

6.1 Multiple Regression Models 

Need for Several Predictor Variables 

214 

When we first introduced regression analysis in Chapter 1, we spoke of regression models 
containing a number of predictor variables. We mentioned a regression model where the 
response variable was direct operating cost for a branch office of a consumer finance chain, 
and four predictor variables were considered, including average number ofloans outstanding 
at the branch and total number of new loan applications processed by the branch. We also 
mentioned a tractor purchase study where the response variable was volume of tractor 
purchases in a sales territory, and the nine predictor variables included number of farms in 
the territory and quantity of crop production in the territory. ln addition, we mentioned a 
study of short children where the response variable was the peak plasma growth hormone 
level, and the 14 predictor variables included gender, age, and various body measurements. 
In all these examples, a single predictor variable in the model would have provided an 
inadequate description since a number of key variables affect the response variable in 
important and distinctive ways. Furthermore, in situations of this type, we frequently find 
that predictions of the response variable based on a model containing only a single predictor 
variable are too imprecise to be useful. We noted the imprecise predictions with a single 
predictor variable in the Toluca Company example in Chapter 2. A more complex model, 
containing additional predictor variables, typically is more helpful in providing sufficiently 
precise predictions of the response variable. 

In each of the examples just mentioned, the analysis was based on observational data be
cause the predictor variables were not controlled, usually because they were not susceptible 
to direct control. Multiple regression analysis is also highly useful in experimental situations 
where the experimenter can control the predictor variables. An experimenter typically will 
wish to investigate a number of predictor variables simultaneously because almost always 
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more than one key predictor variable influences the response. For example, in a study of 
productivity of work crews, the experimenter may wish to control both the size of the crew 
and the level of bonus pay. Similarly, in a study of responsiveness to a drug, the experimenter 
may wish to control both the dose of the drug and the method of administration. 

The multiple regression models which we now describe can be utilized for either obser
vational data or for experimental data from a completely randomized design. 

First-Order Model with Two Predictor Variables 

FIGURE6.1 
Response 
Function is a 
Plane-Sales 
Promotion 
Example. 

When there are two predictor variables X1 and X2, the regression model: 

Y; = f3o + f31Xn + f32X;2 + £; (6.1) 

is called a first-order model with two predictor variables. A first-order model, as we noted 
in Chapter 1, is linear in the predictor variables. Y; denotes as usual the response in the 
ith trial, and Xn and X;2 are the values of the two predictor vari;bles in the ith trial. The 
parameters of the model are {30, {3 1, and {32 , and the error term is£;. L 

Assuming that£{£;}= 0, the regression function for model (6.1) is: 

(6.2) 

Analogous to simple linear regression, where the regression function E {Y} = {30 + f3 1X is 
a line, regression function (6.2) is a plane. Figure 6.1 contains a representation of a portion 
of the response plane: 

E{Y} = 10 + 2X1+5X2 (6.3) 

Note that any point on the response plane (6.3) corresponds to the mean response E{Y} at 
the given combination oflevels of X1 and X2• 

Figure 6.1 also shows an observation Y; corresponding to the levels (Xn, X;2) of the two 
predictor variables. Note that the vertical rule in Figure 6.1 between Y; and the response plane 
represents the difference between Y; and the mean E {Y;} of the probability distribution of 
Y for the given (Xn, X;2) combination. Hence, the vertical distance from Y; to the response 
plane represents the error term£; = Y; - E{Y;}. 

Xz 

f{Y} = 1 o + 2X1 + 5X2 

y 

x, 
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Example 

Frequently the regression function in multiple regression is called a regression surface 
or a response surface. In Figure 6.1, the response surface is a plane, but in other cases the 
response surface may be more complex in nature. 

Meaning of Regression Coefficients. Let us now consider the meaning of the regression 
coefficients in the multiple regression function (6.3). The parameter f3o = 10 is the Y in
tercept of the regression plane. If the scope of the model includes X 1 = 0, X2 = 0, then 
{30 = 10 represents the mean response E{Y} at X 1 = 0, X2 = 0. Otherwise, f3o does not 
have any particular meaning as a separate term in the regression model. 

The parameter {3 1 indicates the change in the mean response E{Y} per unit increase in 
X 1 when X2 is held constant. Likewise, {32 indicates the change in the mean response per 
unit increase in X2 when X 1 is held constant. To see this for our examg\~, suppose X2 is 
held at the level X2 = 2. The regression function (6.3) now is: ~ 

E{Y} = 10 + 2X 1 +5(2) = 20 + 2X 1 X2 =2 (6.4) 

Note that this response function is a straight line with slope {3 1 = 2. The same is true for 
any other value of X2 ; only the intercept of the' response function will differ. Hence, {3 1 =2 
indicates that the mean response E {Y} increases by 2 with a unit increase in X 1 when X2 is 
constant, no matter what the level of X2 . We confirm therefore that {3 1 indicates the change 
in E {Y} with a unit increase in X 1 when X2 is held constant. 

Similarly, {32 = 5 in regression function (6.3) indicates that the mean response E{Y} 
increases by 5 with a unit increase in X2 when X 1 is held constant. 

When the effect of X 1 on the mean response does not depend on the level of X2, and 
correspondingly the effect of X2 does not depend on the level of X 1, the two predictor 
variables are said to have a,dditive effects or not to interact. Thus, the first-order regression 
model (6.1) is designed for predictor variables whose effects on the mean response are 
additive or do not interact. 

The parameters {3 1 and {32 are sometimes called partial regression coefficients because 
they reflect the partial effect of one predictor variable when the other predictor variable is 
included in the model and is held constant. 

The response plane (6.3) shown in Figure 6.1 is for a regression model relating test market 
sales (Y, in 10 thousand dollars) to point-of-sale expenditures (X1, in thousand dollars) and 
TV expenditures (X2, in thousand dollars). Since {3 1 =2, if point-of-sale expenditures in 
a locality are increased by one unit (1 thousand dollars) while TV expenditures are held 
constant, expected sales increase by 2 units (20 thousand dollars). Similarly, since {32 = 5, 
if TV expenditures in a locality are increased by 1 thousand dollars and point-of-sale 
expenditures are held constant, expected sales increase by 50 thousand dollars. 

Comments 

1. A regression model for which the response surface is a plane can be used either in its own right 
when it is appropriate, or as an approximation to a more complex response surface. Many complex 
response surfaces can be approximated well by a plane for limited ranges of X1 and X2. 



Chapter 6 Multiple Regression I 217 

2. We can readily establish the meaning of {31 and f3z by calculus, taking partial derivatives of the 
response surface (6.2) with respect to X1 and X2 in tum: 

aE{Y} 
~=f31 

()E{Y} 
aX2 = f3z 

The partial derivatives measure the rate of change in E { Y} with respect to one predictor variable when 
the other is held constant • 

First-Order Model with More than Two Predictor Variables 
We consider now the case where there are p - 1 predictor variables X 1, ••• , X p-I • The 
regression model: 

Y; = f3o + f31Xil + f32X;2 + · · -+ f3p-1X;,p-1.+ £; 

is called a first-order model with p - 1 predictor variables. It can also be written: 

p-l 

Y; = f3o + L f3kXik + £; 

k=l 

or, if we let X;o = 1, it can be written as: 

p-l 

Y; = Lf3kXik + £; 

k=O 

where X;o = l 

L 

Assuming that E {£;} = 0, the response function for regression model (6.5) is: 

E{Y} = fJo + f31X1 + f32X2 + · -· + f3p-1Xp-1 

(6.5) 

(6.Sa) 

(6.Sb) 

(6.6) 

This response function is a hyperplane, which is a plane in more than two dimensions. It 
is no longer possible to picture this response surface, as we were able to do in Figure 6.1 
for the case of two predictor variables. Nevertheless, the meaning of the parameters is 
analogous to the case of two predictor variables. The parameter f3k indicates the change in 
the mean response E{Y} with a unit increase in the predictor variable Xk> when all other 
predictor variables in the regression model are held constant. Note again that the effect 
of any-predictor variable on the mean response is the same for regression model (6.5) no 
matter what are the levels at which the other predictor variables are held. Hence, first
order regression model (6.5) is designed for predictor variables whose effects on the mean 
response are additive and therefore do !1ot interact. 

Comment 
When p - 1 = 1, regression model (6.5) reduces to: 

li = f3o + f31X;1 + e; . 
which is the simple linear regression model considered in earlier chapters. • 

General linear Regression Model 
In general, the variables X 1, ••• , X p- l in a regression model do not need to represent 
different predictor variables, as we shall shortly see. We therefore define the general linear 
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regression model, with normal error terms, simply in terms of X variables: 

Y; = f3o + f31X;1 + {3zX;2 + · --+ /3p-1X;,p-1 + £; 

where; 

f3o, f3i. ... , /3p-l are parameters 

Xii, ... , X;,p-l are known constants 

£i are independent N (0, a 2
) 

i = 1, ... ,n 

Ifwe let X;o = 1, regression model (6.7) can be written as follows: 

Yi = f3oX;o + f31Xi1 + f32X;2 + · -· + /3p-1Xi,p-1 + e,;,.4''

where X;o = 1, or: 
p-l 

Y; = L f3kXik + £; 

k=O 

where X;o = 1 

The response function for regression model-(6.7) is, since E {£;} = 0: 

(6.7) 

(6.7a) 

(6.7b) 

(6.8) 

Thus, the general linear regression model with normal error terms implies that the obser
vations Y; are independent normal variables, with mean E{Y;} as given by (6.8) and with 
constant variance a 2

• 

This general linear model encompasses a vast variety of situations. We consider a few 
of these now. 

p - 1 Predictor Variables. When X 1, ••• , X p- l represent p - 1 different predictor vari
ables, general linearregression model (6.7) is, as we have seen, a first-order model in which 
there are no interaction effects between the predictor variables. The example in Figure 6.1 
involves a first-order model with two predictor variables. 

Qualitative Predictor Variables. The general linearregression model (6.7) encompasses 
not only quantitative predictor variables but also qualitative ones, such as gender (male, 
female) or disability status (not disabled, partially disabled, fully disabled). We use indicator 
variables that take on the values 0 and 1 to identify the classes of a qualitative variable. 

Consider a regression analysis to predict the length of hospital stay (Y) based on the age 
(Xi) and gender (X2) of the patient. We define X2 as follows: 

X = { 1 if patient female 
2 0 if patient male 

The first-order regression model then is as follows: 

Yi= f3o + f31Xil + f32X;2 + £; 

where: 

xii =patient's age 

X- _ { 1 if patient female 
'
2 

- 0 if patient male 

(6.9) 
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The response function for regression model (6.9) is: 

E{Y} = f3o + f31X1 + f32X2 (6.10) 

For male patients, X2 = 0 and response function (6.10) becomes: 

Male patients (6.10a) 

For female patients, X2 = 1 and response function (6.10) becomes: 

Female patients (6.10b) 

These two response functions represent parallel straight lines with different intercepts. 
In general, we represent a qualitative variable with c classes by means of c - 1 indicator 

variables. For instance, if in the hospital stay example the qualitative variable disability 
status is to be added as another predictor variable, it can be represented as follows by the 
two indicator variables X3 and X4 : 

if patient not disabled 
otherwise 

if patient partially disabled 
otherwise 

The first-order model with age, gender, and disability status as predictor variables then is: 

where: 

xi] = patient's age 

X- _ { I if patient female 
'
2 

- 0 if patient male 

X- _ { 1 if patient not disabled 
'
3 

- 0 otherwise 

{ 
1 if patient partially disabled 

Xi4 = 0 otherwise 

(6.11) 

In Chapter 8 we present a comprehensive discussion of how to model qualitative predictor 
variables and how to interpret regression mbdels containing qualitative predictor variables. 

Polynomial Regression. Polynomial regression models are special cases of the general 
linear regression model. They contain squared and higher-order terms of the predictor vari
able(s), making the response function curvilinear. The following is a polynomial regres.sion 
model with one predictor variable: 

-Y; = f3o + f31X; + f32Xi + £; (6.12) 

Figure 1.3 on page 5 shows an example of a polynomial regression function with one 
predictor variable. 

Despite the curvilinear nature of'i:he response function for regression model (6.12), it is 
a special case of general linear regression model (6.7). If we let Xn = X; and Xn = X?, 
we can write (6.12) as follows: 

Y; = f3o + f31Xn + f3zXn + £; 
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which is in the form of general linear regression model (6.7). While (6.12) illustrates a curvi
linearregression model where the response function is quadratic, models with higher-degree 
polynomial response functions are also particular cases of the general linear regression 
model. We shall discuss polynomial regression models in more detail in Chapter 8. 

Transformed Variables. Models with transformed variables involve complex, curvilinear 
response functions, yet still are specialcases of the general linear regression model. Consider 
the following model with a transformed Y variable: 

(6.13) 

Here, the response surface is complex, yet model (6.13) can still be treated as a general 
linear regression model. If we let Y( = log Y;, we can write regressi9pJ'inodel (6.13) as 
follows: 

Y; = f3o + f31Xn + /32X;2 + /33X;3 + £; 

which is in the form of general linear regression model (6.7). The response variable just 
happens to be the logarithm of Y. 

Many models can be transformed into the g·eneral linear regression model. For instance, 
the model: 

I 
Yi=~~~~~~~~~-

f3o + f31Xn + f3zX;2 + £; 
(6.14) 

can be transformed to the general linear regression model by letting Y; = 1 / Y;. We then 
have: 

Y( = f3o + f31 Xn + f3zXi2 + £; 

Interaction Effects. When the effects of the predictor variables on the response variable 
are not additive, the effect of one predictor variable depends on the levels of the other pre
dictor variables. The general linear regression model (6.7) encompasses regression models 
with nonadditive or interacting effects. An example of a nonadditive regression model with 
two predictor variables X1 and X2 is the following: 

(6.15) 

Here, the response function is complex because of the interaction term /33XnXi2. Yet 
regression model ( 6.15) is a special case of the general linear regression model. Let X;3 = 
X; 1X;2 and then write (6.15) as follows: 

Y; = f3o + f31 xii + f32X;2 + f33X;3 + £; 

We see that this model is in the form of general linear regression model (6.7). We shall 
discuss regression models with interaction effects in more detail in Chapter 8. 

Combination of Cases. A regression model may combine several of the elements we have 
just noted and still be treated as a general linear regression model. Consider the following 
regression model containing linear and quadratic terms for each of two predictor variables 
and an interaction term represented by the cross-product term: 

(6.16) 
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FIGURE 6.2 Additional Examples of Response Functions. 

y 

(a) (b) 

Let us define: 

Zil =Xii Z;2 = Xi1 Z;3 = X;2 Z;4 = Xi2 Z;s = X;1Xn 

We can then write regression model (6.16) as follows: 

Y; = f3o + f31Z;1 + f32Z;2 + f33Z;3 + f34Z;4 + f3sZ;s + £; 

which is in the form of general linear regression model (6.7). 
The general linear regression model (6.7) includes many complex models, some of which 

may be highly complex. Figure 6.2 illustrates two complex response surfaces when there 
are two predictor variables, that can be represented by general linear regression model (6.7). 

Meaning of Linear in General Linear Regression Model. It should be clear from the 
various examples that general linearregression model (6.7) is not restricted to linear response 
surfaces. The term linear model refers to the fact that model (6.7) is linear in the parameters; 
it does-not refer to the shape of the response surface. 

We say that a regression model is linear in the parameters when it can be written in the 
form: 

(6.17) 

where the terms c;o, C; I• etc., are coefficients involving the predictor variables. For example, 
first-order model ( 6.1) in two predicto~ variables: 

i'; = f3o + f31Xil + f32Xi2 + £; 

is linear in the parameters, with c;o = 1, c; 1 = x'il, and c;2 = X;2. 
An example of a nonlinear regre&Sion model is the following: 

Y; = f3o exp(f31 X;) + £; 

This is a nonlinear regression model because it cannot be expressed in the form of (6.17). 
We shall discuss nonlinear regression models in Part III. 
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6.2 General Linear Regression Model in Matrix Terms 

We now present the principal results for the general linear regression m~del (6. 7) in matrix 
terms. This model, as noted, encompasses a wide variety of particular cases. The results to 
be presented are applicable to all of these. 

It is a remarkable property of matrix algebra that the results for the general linear regres
sion model (6.7) in matrix notation appear exactly as those for the simple linear regression 
model (5.57). Only the degrees of freedom and other constants related to the number of X 
variables and the dimensions of some matrices are different. Hence, we are able to present 
the results very concisely. 

The matrix notation, to be sure, may hide enormous computational complexities. To find 
the inverse of a 10 x 10 matrix A requires a tremendous amount of t6Ciputation, yet it is 
simply represented as A- 1

• Our reason for emphasizing matrix algebra is that it indicates 
the essential conceptual steps in the solution. The actual computations will, in all but the 
very simplest cases, be done by computer. Hence, it does not matter to us whether (X'Xr 1 

represents finding the inverse of a 2 x 2 or a 10 x lC!matrix. The important point is to know 
what the inverse of the matrix represents. 

To express general linear regression model (6.7): 

in matrix terms, we need to define the following matrices: 

(6.18a) (6.18b) 

n [' 
X11 X12 x.,,_, I 

Y2 1 X21 X22 X2.p-I 
Y= X= 

nxl : nxp ~ 

Yn Xni Xn2 Xn,p-1 

(6.18) 
(6.18c) (6.18d) 

I ~ I n~I = r::1 
f3p-l Sn 

~ = 
pxl 

Note that the Y and E vectors are the same as for simple linear regression. The ~ vector 
contains additional regression parameters, and the X matrix contains a column of ls as well 
as a column of the n observations for each of the p - I X variables in the regression model. 
The row subscript for each element X;k in the X matrix identifies the trial or case, and the 
column subscript identifies the X variable. 

In matrix terms, the general linear regression model (6.7) is: 

Y=X ~+e 
nxl nxp nxp nxl 

(6.19) 
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where: 

Y is a vector of responses 

~ is a vector of parameters 

X is a matrix of constants 

E is a vector of independent normal random variables with expectation 

E{ E} = 0 and variance-covariance matrix: 

Consequently, the random vector Y has expectation: 

E{Y} =X~ 
nxl 

and the variance-covariance matrix of Y is the same as that of e: 

6.3 Estimation of Regression Coefficients 

(6.20) 

(6.21) 

The least squares criterion (1.8) is generalized as follows for general linear regression 
model (6.7): 

n 

Q = L(Y; - f3o - f31Xn - · · · - f3p-1Xi,p- 1)
2 (6.22) 

i=I 

The least squares estimators are those values of {30, f3i. ... , f3p-l that minimize Q. Let us 
denote the vector of the least squares estimated regression coefficients b0 , bi. ... , bp-l as b: 

(6.23) 

The least squares normal equations for the general linear regression model (6.19) are: 

• X'Xb=X'Y (6.24) 

and the least squares estimators are: 

b = (X'X)-1 (X'X) Y 
2xl 2x2 2xl 

(6.25) 
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The method of maximum likelihood leads to the same estimators for normal error regres
sion model (6.19) as those obtained by the method ofleast squares in (6.25). The likelihood 
function in (1.26) generalizes directly for multiple regression as follows: 

1 [ l ll ] L(~, a2) = (2rra2)n/2 exp - 2a2 ~(Y; - f3o - f31Xil - ... - f3p-l Xi.p-1)2 (6.26) 

Maximizing this likelihood function with respect to {30, {31, ••• , f3p-l leads to the estimators 
in (6.25). These estimators are least squares and maximum likelihood estimators and have 
all the properties mentioned in Chapter 1: they are minimum variance unbiased, consistent, 
and sufficient. 

6.4 Fitted Values and Residuals 

Let the vector of the fitted values Y; be denoted by Y and the vector of the residual terms 
e; = Y; - Y; be denoted by e: --y 

(6.27a) (6.27b) 

The fitted values are represented by: 

Y =Xh 
nxl 

and the residual terms by: 

e =Y-Y=Y-Xb 
nxl 

e = 
nxl 

(6.27) 

(6.28) 

(6.29) 

The vector of the fitted values Y can be expressed in terms of the hat matrix Has follows: 

y =HY 
nxl 

(6.30) 

where: 

H = X(X'X)- 1X' (6.30a) 
nxn 

Similarly, the vector of residuals can be expressed as follows: 

e =(1-H)Y 
nxl 

(6.31) 

.The variance-covariance matrix of the residuals is: 

01-{e} = a 2 (1 - H) (6.32) 
nxn 
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which is estimated by: 

s2{e} = MSE(I - II) (6.33) 
nxn 

6.5 Analysis of Variance Results 

sums of Squares and Mean Squares 

TABLE 6.1 
ANOVA Table 
for General 
Linear 
Regression 
Model (6.19). 

The sums of squares for the analysis of variance in matrix terms are, from (5.89): 

SSTO = Y'Y- (~) Y'JY = Y' [1- (~) J] Y t 

SSE= e'e = (Y -Xb)'(Y - Xb) = Y'Y - b'X'Y = Y'(I- H)Y 

SSR = b'X'Y- (~) Y'JY = Y' [H- (~) J] Y 

(6.34) 

(6.35) 

~.36) 

where J is an n x n matrix of ls defined in (5.18) and His the hat matrix defined in (6.30a). 
SSTO, as usual, has n - 1 degrees of freedom associated with it. SSE has n - p degrees 

' of freedom associated with it since p parameters need to be estimated in the regression 
function for model (6.19). Finally, SSR has p - 1 degrees of freedom associated with it, 
representing the number of X variables X 1, ... , X p-l. 

Table 6.1 shows these analysis of variance results, as well as the mean squares MSR and 
MSE: 

MSR= SSR 
p-1 

SSE 
MSE=-

n-p 

(6.37) 

(6.38) 

The expectation of MSE is a 2
, as for simple linear regression. The expectation of MSR 

is a 2 plus a quantity that is nonnegative. For instance, when p - 1 = 2, we have: 

2 1 [ 2""' - 2 2""' - 2 E{MSR} =a + 2 {31 L)Xil - X1) + {32 L.._/X;2 - X2) 

+ 2f31f32 I:cxn - X1)(Xi2 - X2)] 

Note that if both {31 and {32 equal zero, E{MSR} = a 2. Otherwise E{MSR} > a 2. 

Source of 
Variation SS_ df MS 

Regression SSR = b'X'Y - ( ~} Y'JY f>-1 MSR= SSR 
p-1 

MSE= SSE Error SSE= Y'Y - b'X'Y n- p . n-p 

Total SSTO == Y'Y - ( ~) Y'JY n-i 
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F Test for Regression Relation 
To test whether there is a regression relation between the response variable Y and the set of 
X variables Xi, ... , X p-i. i.e., to choose between the alternatives: 

Ho: fJ1 = fJ2 = · · · = /3p-1 = 0 

H0 : not all f3k (k = I, ... , p - l) equal zero 

we use the test statistic: 

F* = MSR 
MSE 

The decision rule to control the Type 1 error at a is: 

If F* :S F(l - a; p - I, n - p), conclude Ho 

If F* > F(l - a; p - 1, n - p), conclude Ha 

(6.39a) 

(6.39b) 

(6.39c) 

The existence of a regression relation by itself does not, of course, ensure that useful 
predictions can be made by using it. 

Note that when p - I = 1, this test reduces to the F test in (2.60) for testing in simple 
linear regression whether or not {31 = 0. 

Coefficient of Multiple Determination 
The coefficient of multiple determination, denoted by R2

, is defined as follows: 

Rz = SSR = 1 - SSE (6.40) 
SSTO SSTO 

It measures the proportionate reduction of total variation in Y associated with the use of the 
set of X variables X 1, ••• , X p-l ·The coefficient of multiple determination R2 reduces to the 
coefficient of simple determination in (2.72) for simple linear regression when p - 1=1, 
i.e., when one X variable is in regression model (6.19). Just as before, we have: 

0 ::: R2 :S 1 (6.41) 

where R2 assumes the value 0 when all bk = 0 (k = I, ... , p - 1), and the value 1 when 
all Y observations fall directly on the fitted regression surface, i.e., when Y; = Y; for all i. 

Adding more X variables to the regression model can only increase R2 and never reduce 
it, because SSE can never become larger with more X variables and SSTO is always the 
same for a given set of responses. Since R2 usually can be made larger by including a larger 
number of predictor variables, it is sometimes suggested that a modified measure be used 
that adjusts for the number of X variables in the model. The a,djusted coefficient of multiple 
determination, denoted by R;, adjusts R2 by dividing each sum of squares by its associated 
degrees of freedom: 

SSE 

2 n - p ( n - 1 ) SSE 
Ra = I - SSTO = l - n - p SSTO (6.42) 

n-1 
This adjusted coefficient of multiple determination may actually become smaller when 
another X variable is introduced into the model, because any decrease in SSE may be more 
than offset by the loss of a degree of freedom in the denominator n - p. 
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Comments 

1. To distinguish between the coefficients of determination for simple and multiple regression, 
we shall from now on refer to the former as the coefficient of simple determination. 

2. It can be shown that the coefficient of multiple determination R2 can be viewed as a coefficient 
of simple determination between the responses Y; and the fitted values Y;. 

3. A large value of R2 does not necessarily imply that the fitted model is a useful one. For instance, 
observations may have been taken at only a few levels of the predictor variables. Despite a high R2 

in this case, the fitted model may not be useful if most predictions require extrapolations outside the 
region of observations. Again, even though R2 is large, MSE may still be too large for inferences to 
be useful when high precision is required. • 

Coefficient of Multiple Correlation ~.· 

,, 

The coefficient of multiple correlation R is the positive square root of R2
: 

R = ,JR2 

When there is one X variable in regression model (6.19), i.e., when p-1 = 1, the coefficient 
of multiple correlation R equals in absolute value the correlation coefficient r in (2.73) for 
simple correlation. 

6.6 Inferences about Regression Parameters 

The least squares and maximum likelihood estimators in b are unbiased: 

E{b} = ~ (6.44) 

The variance-covariance matrix a 2{b}: 

I 
a 2{bo} 

a{b1, bo} 

a{bp~i. bo} 

a{bo, bp-1 }I 
a{bi. bp-1} 

a 2{bp-1} 

(6.45) 

is given by: 

a 2 {b} = a 2 (X'X)-1 (6.46) 
pxp 

The estimated variance-covariance matrix s2{b}: I s'{bo) 
's{bo, bi} 

s2{b} = 
s{b7, ho} s 2{bi} 

pxp 

s{bp~1. bo}· s{bp-1. bi} 

s{bo, bp-1 }I 
s{bi. bp-il 

s2{bp-1} 

(6.47) 

is given by: 

s2{b} = MSE(X'X)- 1 (6.48) 
pxp 
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From s2{b}, one can obtain s2{b0 }, s2{bi}, or whatever other variance is needed, or any 
needed covariances. 

Interval Estimation of Pk 

Tests for Pk 

For the normal error regression model (6.19), we have: 

k = 0, 1, ... ' p - 1 

Hence, the confidence limits for fh with 1 - a confidence coefficient are: 

bk± t(l -a/2;n - p)s{bk} 

Tests for f3k are set up in the usual fashion. To test: 

Ho: f3k = 0 

Ha: fJk =I- 0 

we may use the test statistic: 

and the decision rule: 

If lt*I .:'S t(l - a/2; n - p), conclude Ho 

Otherwise conclude Ha 

(6.49) 

(6.50) 

(6.51 a) 

(6.51 b) 

(6.51c) 

The power of the t test can be obtained as explained in Chapter 2, with the degrees of 
freedom modified to n - p. 

As with simple linear regression, an F test can also be conducted to determine whether 
or not fJk = 0 in multiple regression models. We discuss this test in Chapter 7. 

Joint Inferences 
The Bonferroni joint confidence intervals can be used to estimate several regression co
efficients simultaneously. If g parameters are to be estimated jointly (where g _:s p), the 
confidence limits with family confidence coefficient 1 - a are: 

(6.52) 

where: 

B = t(l -a/2g;n - p) (6.52a) 

In Chapter 7, we discuss tests concerning subsets of the regression parameters. 
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Estimation of Mean Response and Prediction 
of New Observation 

Interval Estimation of E { Yh} 
For given values of X1, ••• , Xp-i. denoted by Xhi. ... , Xh,p-1' the mean response is 
denoted by E{Yh}. We define the vector X1i: 

(6.53) 

so that the mean response to be estimated is: 

E{Yh} = X~~ ~6.54) 

The estimated mean response corresponding to Xh, denoted by Yh, is: 

Yh = X~b (6.55) 

" This estimator is unbiased: 

(6.56) 

and its variance is: 

(6.57) 

This variance can be expressed as a function of the variance-covariance matrix of the 
estimated regression coefficients: 

(6.57a) 

Notefrom(6.57a)thatthe variancea2{Yh} is a function of the variancesa2{bd of the regres
sion coefficients and of the covariances a{bb bk'} between pairs of regression coefficients, 
just as in si_mple linear regression. The estimated variance s2 {Yh} is given by: 

(6.58) 

The 1 - a confidence limits for E{Yh} are: 

Yh ± t(l - a/2; n - p)s{Yh} (6.59) 

Confidence Region for Regression Surface ' 
The 1-a confidence region for the-entire regression surface is an extension of the Working
Hotelling confidence band (2.40) for the regression line when there is one predictor variable. 
Boundary points of the confidence regio~ at Xh are obtained from: 

(6.60) 
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where: 

W2 = pF(l - a; p, 11 - p) (6.60a) 

The confidence coefficient l - a provides assurance that the region contains the entire 
regression surface over all combinations of values of the X variables. 

Simultaneous Confidence Intervals for Several Mean Responses 
To estimate a number of mean responses E { Yn} corresponding to different X;, vectors with 
family confidence coefficient l - a, we can employ two basic approaches: 

l. Use the Working-Hotelling confidence region bounds (6.60) for the seven.ii X,, vect0rs 
cf> 

of interest: ,,. 

Y;, ± Ws{Y,,} (6.61) 

where Y1,, W, and s{Y;,} are defined in (6.55), (6.60a), and (6.58), respectively. Since the 
Working-Hotelling confidence region covers the mean ~sponses for all possible Xn vec
tors with confidence coefficient I - a, the selected boundary values will cover the mean 
responses for the X,, vectors of interest with family confidence coefficient greater than 1-cx. 

2. Use Bonferroni simultaneous confidence intervals. When g interval estimates are to 
be made, the Bonferrnni confidence limits are: 

Y;, ± Bs{Y11 } (6.62) 

where: 

B = t(I - a/2g; n - p) (6.62a) 

For any particular application, we can compare the W and B multiples to see which 
procedure will lead to narrower confidence intervals. If the X 11 levels are not specified in 
advance but are determined as the analysis proceeds, it is better to use the Working-Hotelling 
limits (6.61) since the family for this procedure includes all possible X11 levels. 

Prediction of New Observation Yh(new) 

The 1 - a prediction limits for a new observation Y1i(new) corresponding to X;,, the specified 
values of the X variables, are: 

Y,, ±t(l -a/2;n - p)s{pred} 

where: 

s2 {pred} = MSE + s2 {Y;,} = MSE(l + X~1 (X'X)- 1 X,,) 

and s2 {Y,,} is given by (6.58). 

Prediction of Mean of m New Observations at Xh 

(6.63) 

(6.63a) 

When m new observations are to be selected at the same levels X;, and their mean Y1i(new) is 
to be predicted, the I - a prediction limits are: 

Y11 ± t(I - a/2; n - p)s{predmean} (6.64) 
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where: 

MSE ~ ( 1 ) s2{predmean} =-;;;- + s2 {Yh} = MSE m + X~(X'X)- 1Xh (6.64a) 

Predictions of g New Observations 

,, 

Simultaneous Scheffe prediction limits for g new observations at g different levels Xh with 
family confidence coefficient l - a are given by: 

Y11 ± Ss{pred} (6.65) 

where: 

S2 = gF(l - a;g, n - p) (6.65a) 

and s2{pred} is given by (6.63a). 
Alternatively, Bonferroni simultaneous prediction limits can be used. For g predictions 

with family confidence coefficient 1 - a, they are: l 

Yh ± Bs{pred} (6.66) 

where: 

B = t(l - a/2g;n- p) (6.66a) 

A comparison of Sand B in advance of any particular use will indicate which procedure 
will lead to narrower prediction intervals. 

Caution about Hidden Extrapolations 

FIGURE6.3 
Region of 
Observations 
onX1 andX2 
Jointly, 
Compared with 
Ranges of X 1 
andX2 
Individually. 

When estimating a mean response or predicting a new observation in multiple regression, 
one needs to be particularly careful that the estimate or prediction does not fall outside the 
scope of the model. The danger, of course, is that the model may not be appropriate when it 
is extended outside the region of the observations. In multiple regression, it is particularly 
easy to lose track of this region since the levels of X 1, ••• , X p-l jointly define the region. 
Thus, one cannot merely look at the ranges of each predictor variable. Consider Figure 6.3, 
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where the shaded region is the region of observations for a multiple regression application 
with two predictor variables and the circled dot represents the values (X111 , X;,2) for which 
a prediction is to be made. The circled dot is within the ranges of the predictor variables 
X 1 and X 2 individually, yet is well outside the joint region of observations. It is easy to 
spot this extrapolation when there are only two predictor variables, but it becomes much 
more difficult when the number of predictor variables is large. We discuss in Chapter 10 
a procedure for identifying hidden extrapolations when there are more than two predictor 
va1iables. 

6.8 Diagnostics and Re1nedial Measures 

Diagnostics play an important role in the development and evaluation of multiple regression 
models. Most of the diagnostic procedures for simple linear regression that we described in 
Chapter 3 ca.ITy over directly to multiple regression. We review these diagnostic procedures 
now, as well as the remedial measures for simple linear regression that carry over directly 
to multiple regression. 

Many specialized diagnostics and remedial procedures for multiple regression have also 
been developed. Some important ones will be discussed in Chapters IO and 11. 

Scatter Plot Matrix 

FIGURE 6.4 
SY GRAPH 
Scatter Plot 
Matrix and 
Correlation 
Matrix
Dwaine Studios 
Example. 

Box plots, sequence plots, stem-and-leaf plots, and dot plots for each of the predictor vari
ables and for the response variable can provide helpful, preliminary univariate information 
about these variables. Scatter plots of the response variable against each predictor variable 
can aid in determining the nature and strength of the bivariate relationships between each of 
the predictor vaiiables and the response variable and in identifying gaps in the data points as 
well as outlying data points. Scatter plots of each predictor variable against each of the other 
predictor variables are helpful for studying the bivariate relationships among the predictor 
variables and for finding gaps and detecting outliers. 

Analysis is facilitated if tl1ese scatter plots are assembled in a scatter plot matrix, such 
as in Figure 6.4. In this figure, the Y variable for any one scatter plot is the name found in 

(a) Scatter Plot Matrix 

SALES 

TARGTPOP 

.. DISPOINC 

(b) Correlation Matrix 

SALES TARGTPOP DISPOINC 

SALES l.000 
TARGTPOP 
DISPOINC 

.945 
1.000 

.836 

.781 
l.000 
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its row, and the X variable is the name found in its column. Thus, the scatter plot matrix in 
Figure 6.4 shows in the first row the plots of Y (SALES) against X 1 (TARGE1POP) and 
X2 (DISPOINC), of X1 against Y and X2 in the second row, and of X2 against Y and X1 

in the third row. These variables are described on page 236. Alternatively, by viewing the 
first column, one can compare the plots of X 1 and X2 each against Y, and similarly for the 
other two columns. A scatter plot matrix facilitates the study of the relationships among 
the variables by comparing the scatter plots within a row or a column. Examples in this and 
subsequent chapters will illustrate the usefulness of scatter plot matrices. 

A complement to the scatter plot matrix that may be useful at times is the correlation ma
trix. This matrix contains the coefficients of simple correlation ryi. ry2 , ••• , rY,p-l between 
Y and each of the predictor variables, as well as all of the coefficients of simple correlation 
among the predictor variables-r12 between X1 and X2 , r 13 between X1 and X3 , etc. The 
format of the correlation matrix follows that of the scatter plot matrix: 

l 

rn ryz 'Y,,~O l 
1 r12 r1,p-l 

(6.67) 

r1,p-l rz.p-l 1 

Note that the correlation matrix is symmetric and that its main diagonal contains ls because 
the coefficient of correlation between a variable and itself is I. Many statistics packages 
provide the correlation matrix as an option. Since this matrix is symmetric, the lower (or 
upper) triangular block of elements is frequently omitted in the output. 

Some interactive statistics packages enable the user to employ brushing with scatter plot 
matrices. When a point in a scatter plot is brushed, it is given a distinctive appearance on the 
computer screen in each scatter plot in the matrix. The case corresponding to the brushed 
point may also be identified. Brushing is helpful to see whether a case that is outlying in 
one scatter plot is also outlying in some or all of the other plots. Brushing may also be 
applied to a group of points to see, for instance, whether a group of cases that does not fit 
the relationship for the remaining cases in one scatter plot also follows a distinct pattern in 
any of the other scatter plots. 

Three-Dimensional Scatter Plots 
Some interactive statistics packages provide three-dimensional scatter plots or point clouds, 
and permit spinning of these plots to enable the viewer to see the point cloud from different 
perspectives. This can be very helpful for identifying patterns that are only apparent from 
certain perspectives. Figure 6.6 on page 238 illustrates a three-dimensional scatter plot and 
the use of spinning. 

R~sidual Plots 
A plot of the residuals against the fitted values is useful for assessing the appropriateness of 
the multiple regression function and the constancy of the variance of the error terms, as well 
as for providing information about outliers, just as for simple linear regression. Similarly, 
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a plot of the residuals against time or against some other sequence can provide diagnostic 
information about possible correlations between the error terms in multiple regression. Box 
plots and normal probability plots of the residuals are useful for examining whether the 
error terms are reasonably normally distributed. 

In addition, residuals should be plotted against each of the predictor variables. Each of 
these plots can provide further information about the adequacy of the regression function 
with respect to that predictor va1iable (e.g., whether a curvature effect is required for that 
variable) and about possible variation in the magnitude of the error variance in relation to 
that predictor variable. 

Residuals should also be plotted against imp01tant predictor variables that were omitted 
from the model, to see if the omitted variables have substantial additiQJ.Wl effects on the 
response variable that have not yet been recognized in the regression model. Also, residuals 
should be plotted against interaction terms for potential interaction effects not included in 
the regression model, such as against X1 X2 , X1 X3, and X2 X3, to see whether some or all 
of these interaction terms are required in the model. 

A plot of the absolute residuals or the squared residuals against the fitted values is useful 
for examining the constancy of the variance of the error terms. If nonconstancy is detected, a 
plot of the absolute residuals or the squared residuals against each of the predictor variables 
may identify one or several of the predictor variables to which the magnitude of the error 
variability is related. 

Correlation Test for Normality 
The correlation test for normality described in Chapter 3 carries forward directly to multiple 
regression. The expected values of the ordered residuals under normality are calculated 
according to (3.6), and the coefficient of correlation between the residuals and the expected 
values under normality is then obtained. Table B.6 is employed to assess whether or not 
the magnitude of the correlation coefficient supports the reasonableness of the normality 
assumption. 

Brown-Forsythe Test for Constancy of Error Variance 
The Brown-Forsythe test statistic (3.9) for assessing the constancy of the error variance can 
be used readily in multiple regression when the error variance increases or decreases with 
one of the predictor variables. To conduct the Brown-Forsythe test, we divide the data set 
into two groups, as for simple linear regression, where one group consists of cases where 
the level of the predictor variable is relatively low and the other group consists of cases 
where the level of the predictor variable is relatively high. The Brown-Forsythe test then 
proceeds as for simple linear regression. 

Breusch-Pagan Test for Constancy of Error Variance 
The Breusch-Pagan test (3. 11) for constancy of the error variance in multiple regression is 
carried out exactly the same as for simple linear regression when the elTOr variance increases 
or decreases with one of the predictor variables. The squared residuals are simply regressed 
against the predictor variable to obtain the regression sum of squares SSR*, and the test 
proceeds as before, using the eITOr sum of squares SSE for the full multiple regression 
model. 
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When the error variance is a function of more than one predictor variable, a multiple 
regression of the squared residuals against these predictor variables is conducted and the 
regression sum of squares SSR* is obtained. The test statistic again uses SSE for the full 
multiple regression model, but now the chi-square distribution involves q degrees of free
dom, where q is the number of predictor variables against which the squared residuals are 
regressed. 

f Test for Lack of Fit 
The lack of fit F test described in Chapter 3 for simple linear regression can be carried over 
to test whether the multiple regression response function: "" 

E{Y} = fJo + f3iX1 + ... + f3p-lxp-l 

is an appropriate response surface. Repeat observations in multiple regression are~eplicate 
observations on Y corresponding to levels of each of the X variables that are constant from 
trial to trial. Thus, with two predictor variables, repeat observations require that X 1 and X 2 

each remain at given levels from trial to trial. 
Once the ANOVA table, shown in Table 6.1, has been obtained, SSE is decomposed into 

pure error and lack of fit components. The pure error sum of squares SSPE is obtained by first 
calculating for each replicate group the sum of squared deviations of the Y observations 
around the group mean, where a replicate group has the same values for each of the X 
variables. Let c denote the number of groups with distinct sets of levels for the X variables, 
and let the mean of the Y observations for the jth group be denoted by f j· Then the sum 
of squares for the jth group is given by (3.17), and the pure error sum of squares is the sum 
of these sums of squares, as given by (3.16). The lack of fit sum of squares SSLF equals the 
difference SSE - SSPE, as indicated by (3.24). 

The number of degrees of freedom associated with SSPE is n - c, and the number of 
degrees of freedom associated with SSLF is (n - p) - (n - c) = c - p. Thus, for testing 
the alternatives: 

Ho: E{Y} = fJo + fJ1X1 + · · · + f3p-1Xp-l 

Ha: E{Y} =/. fJo + fJ1X1 + · · · + f3p-1Xr1 

the appropriate test statistic is: 

F* = SSLF 
7 

SSPE = MSLF 
c-p n-c MSPE 

(6.68a) 

(6.68b) 

where SSLF and SSPE are given by (3.24) and (3.16), respectively, and the appropriate 
decision rule is: ' 

Comment 

If F* S F(l - a; c - p, n - i:-), conclude Ho 

If F* > F(l - a; c - p, n - c), conclude Ha 
(6.68c) 

When replicate observations are not available, an approximate lack of fit test can be conducted 
if there are cases that have similar X1r vectors. These cases are grouped together and treated as 
pseudoreplicates, and the test for lack of fit is then carried out using these groupings of similar 
cases. • 
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Remedial Measures 
The remedial measures described in Chapter 3 are also applicable to multiple regression. 
When a more complex model is required to recognize curvature or interaction effects, the 
multiple regression model can be expanded to include these effects. For example, X~ might 
be added as a variable to take into account a curvature effect of X2 , or X1X3 might be 
added as a variable to recognize an interaction effect between X1 and X3 on the response 
variable. Alternatively, transformations on the response and/or the predictor variables can 
be made, following the principles discussed in Chapter 3, to remedy model deficiencies. 
Transformations on the response variable Y may be helpful when the distributions of the error 
terms are quite skewed and the variance of the error terms is not constant. Transformations 
of some of the predictor variables may be helpful when the effects.fa{ these variables are 
curvilinear. In addition, transformations on Y and/or the predictor va1iables may be helpful 
in eliminating or substantially reducing interaction effects. 

As with simple linear regression, the usefulness of potential transformations needs to be 
examined by means of residual plots and other diagnostic tools to determine whether the 
multiple regression model for the transformed data is appropriate. 

Box-Cox Transformations. The Box-Cox procedure for determining an appropriate 
power transformation on Y for simple linear regression models described in Chapter 3 
is al'>O applicable to multiple regression models. The standardized variable Win (3.36) is 
again obtained for different values of the parameter A and is now regressed against the set 
of X variables in the multiple regression model to find that value of A that minimizes the 
error sum of squares SSE. 

Box and Tidwell (Ref. 6.1) have also developed an iterative approach for ascertaining 
appropriate power transformations for each predictor variable in a multiple regression model 
when transformations on the predictor variables may be required. 

6. 9 An Example-lVIultiple Regression with Two 
Predictor Variables 

Setting 

In this section, we shall develop a multiple regression application with two predictor vari
ables. We shall illustrate several diagnostic procedures and several types of inferences that 
might be made for this application. We shall set up the necessary calculations in mauix 
format but, for ease of viewing, show fewer significant digits for the elements of the matrices 
than are used in the actual calculations. 

Dwaine Studios, Inc., operates portrait studios in 21 cities of medium size. These studios 
specialize in p011raits of children. The company is considering an expansion into other 
cities of medium size and wishes to investigate whether sales (Y) in a community can be 

predicted from the number of persons aged 16 or younger in the community (X1) and the 
per capita disposable personal income in the community (X2). Data on these variables for 
the most recent year for the 21 cities in which Dwaine Studios is now operating are shown 
in Figure 6.Sb. Sales are expressed in thousands of dollars and are labeled Y or SALES; 
the number of persons aged 16 or younger is expressed in thousands of persons and is 



FIGURE 6.5 
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Multiple 
Regression 
Output and 
Basic 
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(a) Multiple Regression Output 
DEP VAR' SALES N, 21 MULTIPLE R' O. 957 SQUARED MULTIPLE R' 

0.917 
ADJUSTED SQUARED MULTIPLE R' . 907 STANDARD ERROR OF ESTIMATE, 

11.0074 

VARIABIB COEFFICIENT STD ERROR STD COEF TOIBRANCE 

CONSTANT -138.8571 60.0170 0.0000 
TARGTPOP 

DIS PO INC 

1.4546 
9.3655 

0.2118 
4.0640 

0. 7464 0.3896 
0.2511 0.3896 

ANALYSIS OF VARIANCE 

T 

-1.1473 

6.81382 
2.3045 

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO 

P(2 TAIL) 

0.2663 
0. 0000 
0.0333 

REGRESSION 
RESIDUAL 

24015. 2821 12007. 6411 
121.1626 

99.1035 0.0000 
2180. 9274 18 

INVERSE (X 'X) 

29. 7289 
0.0122 0.00037 

-1.9926 -0.0056 0.1363 

CASE 
1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 

13 
14~ 

15, 
16 
17 
18 
19 
20 
21 

(b) Basic Data 
XI X2 y FITTED RESIDUAL 

68.5 16.7 174.4 187.184 -12.7841 
45.2 16.B 164.4 154.229 10.1706 
91.3 18.2 244.2 234.396 9.8037 
47.8 16.3 154.6 153.329 1.2715 
46.9 17.3 181.6 161.385 20.2151 
66.1 18.2 207.5 197 .741 9. 7586 
49.5 15.9 152.8 152.055 0.7449 
52.0 17.2 163.2 167.867 -4.6666 
48.9 16.6 145.4 157. 738 -12.3382 

38.4 16.0 137 .2 136.846 0.3540 
67.9 18.3 241.9 230.387 11.5126 

72.8 17.1 191.1 197.185 -6.0649 
88.4 17.4 232.0 222.686 9.3143 
42.9 15.B 145.3 141.518 3. 7816 

52.5 17.B 161.1 174.213 -13.1132 

85.7 18.4 209.7 228.124 -18.4239 

41.3 16.5 146.4 145. 747 0.6530 

51.7 16.3 144. 0 ~159. 001 -15. 0013 

89.6 18.1 232.6 230.987 1.6130 
82.7 19.1 224.1 230.316 -6. 2160 

52.3 16.0 166.5 157.064 9.4356 

labeled X1 or TARGTPOP for target population; and per capita disposable personal income 
is expressed in thousands of dollars and labeled X2 or DISPOINC for disposable income. 

The first-order regression model: 

(6.69) 

with normal error terms is expected to be appropriate, on the basis of the SYGRAPH 
scatter plot matrix in Figure 6.4a. Note the linear relation between target population and 
sales and between disposable income and sales. Also note that there is more scatter in the 
latter relationship. Finally note that there is also some linear relationship between the two 
predictor variables. The correlation matrix in Figure 6.4b bears out these visual impressions 
from the scatter plot matrix. 

A SY GRAPH plot of the point clo~d is shown in Figure 6.6a. By spinning the axes, we 
obtain the perspective in Figure 6.6b which supports the tentative conclusion that a response 
plane may be a reasonable regression function to utilize here. 

Basic Calculations 
The X and Y matrices for the Dwaine Studios exrunple are as follows: 

68.5 

45.2 

52.3 

16.71 16.8 

16.0 l ~::::] Y= 

166.5 

(6.70) 
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FIGURE 6.6 SYGRAPH Plot of Point Cloud before and after Spinning-Dwaine Studios Exa 
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68.5 16. 

X'h [ 6:5 
1 

5;3 l 45.2 16. 
45.2 

16.7 16.8 16.0 
52.3 16. 

[ 210 1,302.4 
3600] X'X = 1,302.4 87,707.9 22,609.2 

360.0 22,609.2 6,190.3 

X'Y~ [6:5 
1 

I l 1:~~1 45.2 52.3 . 

16.7 16.8 16.0 . 
166.5 

[ 3,8Wl 
X'Y = 249,643 

66,073 
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3. 

Using (5.23), we obtain: 

[ 

21.0 

(X'X)-1 = l,302.4 

360.0 

l,302.4 360.0 

87,707.9 22,609.2 

22,609.2 6,190.3 

(X'X)- 1 = .0722 .00037 -.0056 
[ 

29.7289 .0722 -1.9926] 

- l.9926 -.0056 .1363 
:;., 

]

-I 

(6.73) 

Algebraic Equivalents. Note that X'X for the first-order regression model (6.69) with 
two predictor variables is: 

or: 

I: X;1 

I: Xf1 

I: XnXil 

For the Dwaine Studios example, we have: 

n = 21 

1

1 Xu X121 
1 X21 X22 

~ ;nl ;,,2 

L X;1 = 68.5 + 45.2 + ... = 1,302.4 

L X;1X;2 = 68.5(16.7) + 45.2(16.8) + ... = 22,609.2 

etc. 

These elements are found in (6.71). 

(6.74) 

Also note that X'Y for the first-order regression model (6.69) with two predictor 
variables is: 

[ 

l l 

X'Y = Xn X21 

X12 - X22 

For the Dwaine Studios example, we have: 

L: Y; = 114.4+·1~.4+ ... = 3,820 

L: xii Y; = 68.5(174.4) + 45.2(164.4) + ... = 249,643 

L X;zY; = 16.7(174.4) + 16.8(164.4) + ... = 66,073 

These are the elements found in ( 6. 72). 

(6.75) 
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Estimated Regression Function 

FIGURE 6.7 
S-Plus Plot of 
Estimated 
Regression 
Surface-
Dwaine Studios 
Example. 

The least squares estimates b are readily obtained by (6.25), using our basic calculations 
in (6.72) and (6.73): 

[ 

29.7289 

b = (X'X)- 1X'Y = .0722 

-1.9926 

.0722 -1.9926] 

.00037 - .0056 

- .0056 .1363 
[ 

3,820] 
249,643 

66,073 

which yields: 

[

-68.857] 
1.455 

9.366 

(6.76) 

and the estimated regression function is: 

Y = -68.857 + 1.455 X 1 + 9 .366X2 

A three-dimensional plot of the estimated reg~~ssion function, with the responses super
imposed, is shown in Figure 6.7. The residuals are represented by the small vertical lines 
connecting the responses to the estimated regression surface. 

This estimated regression function indicates that mean sales are expected to increase by 
1.455 thousand dollars when the target population increases by 1 thousand persons aged 
16 years or younger, holding per capita disposable personal income constant, and that mean 
sales are expected to increase by 9.366 thousand dollars when per capita income increases 
by 1 thousand dollars, holding the target population constant. 

Figure 6.5a contains SYSTAT multiple regression output for the Dwaine Studios exam
ple. The estimated regression coefficients are shown in the column labeled COEFFICIENT; 
the output shows one more decimal place than we have given in the text. 

The SYSTAT output also contains the inverse of the X'X matrix that we calculated 
earlier; only the lower portion of the symmetric matrix is shown. The results are the same 
as in (6.73). 

300 

250 

"' ~ 
"' Vl 200 

150 
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Algebraic Version of Normal Equations. The normal equations in algebraic form fo 
the case of two predictor variables can be obtained readily from (6.74) and (6.75). We have 

(X'X)h=X'Y 

from which we obtain the normal equations: 

L Yi = nbo + bi L xii + b2 L X;2 

LX;iY; = boLX;i +b1LXf1 +b2LX;iX;2 

L X;zY{ = bo L X;z +bi L X;iX;z + bz L Xf2 

Fitted'Values and Residuals 

(6.77) 

To examine the appropriateness of regression model (6.69) for the data at hand, we require 
the fitted values Yt and the residuals e; = Yi - }/.We obtain by (6.28): 

[!,] = [i 
Further, by (6.29) we find: 

68.5 

45.2 

52.3 

Y=Xh 

16.7] [187.2] 
16.8 [-

68
·
857

] - 154.2 
. 1.455 - . . . 
. 9.366 . 

16.0 157.1 

e=Y-Y 

[::] [:::l-l:~;;j = [-:~~] 
e2 i 166.5 157.1 9.4 

' 
Figure 6. Sb shows the computer output for the fitted values and residuals to more decimal 

places than we have presented. 

nalysis of Appropriateness of Model . 
We begin our analysis of the appropriateness of regression model (6.69) for the Dwaine 
Studios example by considering the plot of the residuals e against the fitted values Y in 
Figure 6.8a. This plot does not suggest any systematic deviations from the response plane, 
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FIGURE 6.8 
SY GRAPH 
Diagnostic 
Ptots-Dwaine 
Studios 
Example. 

Multiple Linear Regression 

(a) Residual Plot against Y (b) Residual Plot against X1 
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(c) Residual Plot against X2 (d) Residual Plot against X1X2 
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nor that the variance of the error terms varies with the level of Y. Plots of the residuals e 
against X1 and X2 in Figures 6.8b and 6.8c, respectively, are entirely consistent with the 
conclusions of good fit by the response function and constant variance of the error terms. 

In multiple regression applications, there is frequently the possibility of interaction ef
fects being present. To examine this for the Dwaine Studios example, we plotted the resid
uals e against the interaction term X 1 X2 in Figure 6.8d. A systematic pattern in this plot 
would suggest that an interaction effect may be present, so that a response function of the 
type: 

. might be more appropriate. Figure 6.8d does not exhibit any systematic pattern; hence, no 
interaction effects reflected by the model term f33 X1X2 appear to be present. 
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P1ots-Dwaine 
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(a) (b) 

Plot of Absolute Normal Probability Plot 
Residuals against Y 
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Figure 6.9 contains two additional diagnostic plots. Figure 6.9a presents a plot of the 
absolute residuals against the fitted values. There is no indication of nonconstancy of the 
error variance. Figure 6.9b contains a normal probability plot of the residuals. The pattern 
is moderately linear. The coefficient of correlation between the ordered residuals and their 
expected values under normality is .980. This high value (the interpolated critical value in 
Tuble B.6 for n = 21 and a = .05 is .9525) helps to confirm the reasonableness of the 
conclusion that the error terms are fairly normally distributed. 

Since the Dwaine Studios data are cross-sectional and do not involve a time sequence, 
a time sequence plot is not relevant here. Thus, all of the diagnostics support the use of 
regression model (6.69) for the Dwaine Studios example. 

Analysis of Variance 
To test whether sales are related to target population and per capita disposable income, we 
require the ANOVA table. The basic quantities needed are: 

Y'Y = [174.4 164.4 . . . 166.5] I ::::1 

166.5 

= 721,072.40 

(~) Y'JY = _!_[174.4 164.4 
n 21 

= (
3

,
820

·0)
2 

= 694,876.19 
21 

11 1174.41 1 164.4 
. . . . . . 

1 166.5 
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Thus: 

SSTO = Y'Y - (~) Y'JY = 721,072.40- 694,876.19 = 26,196.21 

and, from our results in (6.72) and (6.76): 

SSE = Y'Y - b'X'Y 

= 721,072.40 - [-68.857 1.455 9.366) [24~::~1 
66,073 

= 721,072.40 - 718,891.47 = 2,180.93 

Finally, we obtain by subtraction: 

SSR = SSTO - SSE= 26,196.21 - 2,180.93 = 24,015.28 
,. 

These sums of squares are shown in the SYSTAT ANOVA table in Figure 6.Sa. AlSo 
shown in the ANOVA table are degrees of freedom and mean squares. Note that three 
regression parameters had to be estimated; hence, 21 - 3 = 18 degrees of freedom are 
associated with SSE. Also, the number of degrees of freedom associated with SSR is 
2-the number of X variables in the model. 

Test of Regression Relation. To test whether sales are related to target population and 
per capita disposable income: 

Ho: f31 = 0 and f32 = 0 

Ha: not both {3 1 and f32 equal zero 

we use test statistic (6.39b): 

F* _ MSR _ 12,007.64 = 
99

_1 
- MSE - 121.1626 

Thi~ test statistic is labeled F-RATIO in the SYSTAT output. For a = .05, we require 
F(.95; 2. 18) = 3.55. Since F" = 99.1 > 3.55, we conclude Ha, that sales are related to 
target population and per capita disposable income. The P-value for this test is .0000, as 
shown in the SYSTAT output labeled P. 

Whether the regression relation is useful for making predictions of sales or estimates of 
mean sales still remains to be seen. 

Coefficient of Multiple Determination. For our example, we have by (6.40): 

, SSR 24,015.28 
R- = --- = = .917 

SSTO 26, 196.21 

Thus, when the two predictor variables, target population and per capita disposable income, 
are considered, the variation in sales is reduced by 91.7 percent. The coefficient of multiple 
determination is shown in the SYSTAT output labeled SQUARED MULTIPLE R. Also 
shown in the output is the coefficient of multiple correlation R = .957 and the adjusted 
coefficient of multiple determination (6.42), R~ = .907, which is labeled in the output 
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ADJUSTED SQUARED MULTIPLE R. Note that adjusting for the number of predictor 
variables in the model had only a small effect here on R2

• 

Estimation of Regression Parameters 
Dwaine Studios is not interested in the parameter f3o since it falls far outside the scope of 
the model. It is desired to estimate {31 and th jointly with family confidence coefficient .90. 
We shall use the simultaneous Bonferroni confidence limits (6.52). 

First, we need the estimated variance-covariance matrix s2{b}: 

s2{b} = MSE(X'X)-1 

MSE is given in Figure 6.5a, and (X'X)- 1 was obtained in (6.73).''Hence: 

s2{b} = 121.1626 .0722 
[ 

29.7289 

[

3,602.0 

= 8.748 

-241.43 

-1.9926 

8.748 

.0448 

-.679 

The two estimated variances we require are: 

.0722 -1.9926] 

.00037 -.0056 

-.0056 .1363 

-241.43 l 
-.679 

16.514 

s2{bi} = .0448 or s{bi} = .212 

s2{b2 } = 16.514 or s{b2 } = 4.06 

(6.78) 

These estimated standard deviations are shown in the SY STAT output in Figure 6.5a, labeled 
STD ERROR, to four decimal places. 

Next, we require for g = 2 simultaneous estimates: 

B = t[l - .10/2(2); 18] = t(.975; 18) = 2.101 

The two pairs of simultaneous confidence limits therefore are 1.455 ± 2.101(.212) and 
9.366 ± 2.101 (4.06), which yield the confidence intervals: 

1.01 .:::: th .:::: l.90 

.84.:::: fJ2.:::: 17.9 

With family confidence coefficient .90, we conclude that {31 falls between l.01and1.90 
and that {32 falls between .84 and 17 .9. ' 

Note that the simultaneous confidence intervals suggest that both {3 1 and {32 are positive, 
which is in accord with theoretical expectations that sales should increase with higher target 
population and higher per capita disposable income, the other variable being held constant. . . 

~irn.ation of Mean Response 
Dwaine Studios would like to estimate expected (mean) sales in cities with target population 
XhI = 65.4 thousand persons aged 16 years Or younger and per Capita disposable income 
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Xh2 = 17.6 thousand dollars with a 95 percent confidence interval. We define: 

The point estimate of mean sales is by (6.55): 

Yh = X~b =[I 65.4 17.6] [-
6

~::~~1 = 191.1~, 
9.366 

The estimated variance by (6.58), using the results in (6.78), is: 

s 2{Yh} = X~s2{b}Xh 

[

3,602.0 J 

=[I 65.4 17.6] 8.748 

-241.43 
= 7.656 

or: 

8.748 

.0448 

-.679 

-241.43 l [ l l -.679 65.4 

16.514 17.6 

For confidence coefficient .95, we need t(.975; 18) = 2.101, and we obtain by (6.59) 
the confidence limits 191.10 ± 2.101(2.77). The confidence interval for E { Yh} therefore 
is: 

185.3 _:::: E{Yh} _:::: 196.9 

Thus, with confidence coefficient .95, we estimate that mean sales in cities with target 
population of 65.4 thousand persons aged 16 years or younger and per capita disposable 
income of 17.6 thousand dollars are somewhere between 185.3 and 196.9 thousand dollars. 
Dwaine Studios considers this confidence interval to provide information about expected 
(average) sales in communities of this size and income level that is precise enough for 
planning purposes. 

Algebraic Version of Estimated Variance s2 {Y,.}. Since by (6.58): 

it follows for the case of two predictor variables in a first-order model: 

s 2{Yh} = s 2{bo} + Xh1s
2
{bi} + Xh2s2{b2} + 2Xhis{bo, bi} 

+ 2Xh2s{bo, b2} + 2Xh1Xh2s{b1, b2} (6.79) 
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Prediction Limits for New Observations 

,, 

Dwaine Studios as part of a possible expansion program would like to predict sales for two 
new cities, with the following characteristics: 

City A City B 

xh, 65.4 53.1 
Xh2 17.6 17.7 

{or 

Prediction intervals with a 90 percent family confidence coefficieht are desired. Note that 
the two new cities have characteristics that fall well within the pattern of the 2t cities on 
which the regression analysis is based. 

To determine which simultaneous prediction intervals are best here, we find S as given 
in (6.65a) and B as given in (6.66a) for g = 2 and l - a = .90: 

S2 = 2F(.90; 2, 18) = 2(2.62) = 5.24 s = 2.29 

and: 

B = t[I - .10/2(2); 18] = t(.975; 18) = 2.101 

Hence, the Bonferroni limits are more efficient here. 
For city A, we use the results obtained when estimating mean sales, since the levels of 

the predictor variables are the same here. We have from before: 

MSE = 121.1626 

Hence, by (6.63a): 

s 2{pred} = MSE + s2{Yh} = 121.1626 + 7.656 = 128.82 

or: 

s{pred} = 11.35 

In similar fushion, we obtain for city B (calculations not shown): 

yh = 174.15 s{pred} = 11.93 

We previously found that the Bonferroni multiple is B = 2.101. Hence, by (6.66) the simul
taneous Bonferroni prediction limits with family confidence coefficient .90 are 191.10 ± 
2.101(11.35) and 174.15±2.HH(I1.93), leading to the simultaneous prediction intervals: 

City A: 167.3 S Yh(ne~) S 214.9 

City B: 149.I S Yh(new) S 199.2• 

With family confidence coefficient .90, We predict that sales in the two cities will be within 
the indicated limits. Dwaine Studios considers these prediction limits to be somewhat useful 
for planning purposes, but would prefer tighter intervals for predicting sales for a particular 
city. A consulting firm has been engaged to see if additional or alternative predictor variables 
can be found that will lead to tighter prediction intervals. 
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Note incidentally that even though the coefficient of multiple determination, R2 = .917, 
is high, the prediction limits here are not fully satisfactory. This serves as another reminder 
that a high value of R2 does not necessarily indicate that precise predictions can be made. 

Cited 6.1. Box, G. E. P .. and P. W. Tidwel I. "Transformations of the Independent Variables." Technometrics 

Reference 4 (1962), pp. 531-50. 

Problems 6.1. Set up the X matrix and ~ vector for each of the following regression models (assume i == 
I. ... .4): 

a. Y; = f3o + /31 Xii + th.Xii Xi2 + t:; 
b. log Y; = f3o + /31 Xii + f32Xi2 + t:; 

6.2. Set up the X matlix and ~ vector for each of the following regression models (assume i == 
I, ... , 5): 

a. Y; = /31 Xii + f32X;2 + /33Xf1 + t:; 
b . .JY; = f3o + /31X;1 +th. log10 X;2 + t:; 

6.3. A student stated: "Adding predictor variables to a regression model can never reduce R2 , so we 
should include all available predictor va1iables in the model." Comment. 

6.4. Why is it not meaningful to attach a sign to the coefficient of multiple correlation R, although 
we do so for the coefficient of simple correlation r 12? 

6.5. Brand preference. In a small-scale experimental study of the relation between degree ofbnmd 
liking (Y) and moisture content (X 1) and sweetness (X2 ) of the product, the following results 
were obtained from the expe1iment based on a completely randomized design (data are coded): 

i: 2 

X;1: 4 4 
X;2: 2 4 
Y;: 64 73 

3 

4 
2 

61 

14 

10 
4 

95 

15 

10 
2 

94 

16 

10 
4 

100 

a. Obtain the scatter plot matrix and the con-elation matrix. What information do these diag
nostic aids provide here? 

b. Fit regression model (6.1) to the data. State the estimated regression function. How is b1 

interpreted here? 

c. Obtain the residuals and prepare a box plot of the residuals. What information does this plot 
provide? 

d. Plot the residuals against Y, X1, X2 , and X1 X2 on separate graphs. Also prepare a normal 
probability plot. Interpret the plots and summa1ize your findings. 

e. Conduct the Breusch-Pagan test for constancy of the error variance, assuming log al = 
y0 + y1 X; 1 + y2 Xi2: use ex = .01. State the alternatives, decision rule, and conclusion. 

f. Conduct a formal test for lack of fit of the first-order regression function; use ex = .01. State 
the alternatives, decision rule, and conclusion. 

6.6. Refer to Brand preference Problem 6.5. Assume that reg1ession model (6.1) with indejX!ndent 
normal error terms is appropriate. 

a. Test whether the1e is a regression relation, using ex = .0 I. State the alternatives, decision 
rule, and conclusion. What does your test imply about f31 and {32? 




